Skip to main content
Log in

MFC-structured biodegradable poly(l-lactide)/poly(butylene adipate-co-terephatalate) blends with improved mechanical and barrier properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Both polylactide (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) are biodegradable polymers. They are thermoplastics which can be processed using conventional polymer processing methods. In this study, microfibrillar-reinforced composites (MFC) based on PLA/PBAT (PLA/Ecoflex®) blends in different weight ratios were prepared under industry-relevant conditions by melt extrusion followed by continuous cold drawing of the extrudates. Strip-like specimens (films) and plates (laminates) of the drawn blends were prepared by compression molding (CM) at processing temperature above the melting temperature (T m) of PBAT, but below T m of PLA. SEM and WAXS observations show that the extruded blend components are isotropic, but become highly oriented after drawing, and they are converted into MFC-structured polymer–polymer composites after CM. An effect of PLA microfibrils on the non-isothermal crystallization of the Ecoflex during cooling from the melt, associated with the formation of crystalline regions of the matrix around the fibrils, was observed. Depending on the blend composition, the compression-molded samples possess a 3- to 7-time higher tensile strength as well as a 15–30 higher modulus than the neat Ecoflex. In addition, the MFC-structured plates exhibited superior barrier properties compared to the neat Ecoflex, e.g., the oxygen permeability decreased by up to 5 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Paul DR, Bucknall CB (2000) Polymer blends, vol 2. Wiley, New York

    Google Scholar 

  2. Utracki LA (2002) Introduction to polymer blends. In: Utracki LA (ed) Polymer blends handbook. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  3. Evstatiev M, Fakirov S (1992) Polymer 33:877

    Article  CAS  Google Scholar 

  4. Evstatiev M, Fakirov S, Schultz JM, Friedrich K (2001) Polym Eng Sci 41:192

    Article  CAS  Google Scholar 

  5. Evstatiev M, Fakirov S, Krasteva B, Friedrich K, Covas J, Cunha A (2002) Polym Eng Sci 42:826

    Article  CAS  Google Scholar 

  6. Friedrich K, Kamo H, Evstatiev M, Fakirov S (2004) J Macromol Sci Phys 43:776

    Google Scholar 

  7. Friedrich K, Evstatiev M, Fakirov S, Evstatiev O, Ishii M, Harrass M (2005) Compos Sci Technol 65:107

    Article  CAS  Google Scholar 

  8. Fakirov S, Shields RJ, Fuchs C, Friedrich K, Bhattacharyya D (2008) Int J Polym Mater 1:33–53

    Article  Google Scholar 

  9. Shields RJ, Bhattacharyya D, Fakirov S (2008) Compos A 39:940

    Article  Google Scholar 

  10. Ihm DW, Hiltner A, Baer E (1991) In: Baer E, Moet A (eds) High performance polymers. Hanser, Munich

    Google Scholar 

  11. Huang WY, Shen JW, Chen HY (2003) J Mater Sci Lett 22:377

    Article  CAS  Google Scholar 

  12. Li ZM, Li BL, Shen KZ, Yang W, Huang R, Yang MB (2004) Macromol Rapid Commun 25:553

    Article  Google Scholar 

  13. Albertsson A-C, Karlsson S (1994) In: Griffin GJL (ed) Chemistry and technology of biodegradable polymers. Blackie, Glasgow

    Google Scholar 

  14. Ali SAM, Doherty PJ, Williams DF (1994) J Appl Polym Sci 51(8):1389

    Article  CAS  Google Scholar 

  15. Steinbüchel A (1995) J Macromol Sci Pure Appl Chem A32(4):653

    Article  Google Scholar 

  16. Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276/277:1

    Article  CAS  Google Scholar 

  17. Plackettanda D, Vazquez Z (2004) In: Baillie C (ed) Green composites. Woodhead Publishing Ltd/CRC Press LLC, Cambridge/Boca Raton

    Google Scholar 

  18. Witt U, Einig T, Yamamoto M, Kleeber I (2002) Chemospheere 44:289

    Article  Google Scholar 

  19. BASF (2001) 23/02/01-last update, a news service provided by BASF. Available online

  20. Sok RM (1994) Permeation of small molecules across a polymer membrane: a computer simulation study. University of Groningen, Groningen, pp 5–12

    Google Scholar 

  21. Fakirov S, Shields RJ, Fuchs C, Friedrich K, Bhattacharyya D (2008) Int J Polym Mater 57(1):33

    Article  CAS  Google Scholar 

  22. Jiang L, Wolcott MP, Zhang J (2006) Biomacromol 7:199

    Article  Google Scholar 

  23. Liu TY, Lin WC, Yang MC, Chen SY (2005) Polymer 46:12586

    Article  CAS  Google Scholar 

  24. Lee SM, Lee YJ, Lee JW (2007) Macromol Res 15:44

    Article  CAS  Google Scholar 

  25. Gu SY, Zhang K, Ren J, Zhan H (2008) Carbohydr Polym 74:79

    Article  CAS  Google Scholar 

  26. Signori F, Coltelli MB, Bronco S (2009) Polym Degrad Stab 94:74

    Article  CAS  Google Scholar 

  27. Zhang NW, Wang QF, Ren J, Wang L (2009) J Mater Sci 44:250. doi:10.1007/s10853-008-3049-4

    Article  CAS  Google Scholar 

  28. Coltelli MB, Della Maggiore I, Bertold M, Signori F, Bronco S, Ciardelli F (2008) Appl Polym Sci 110:1250

    Article  CAS  Google Scholar 

  29. Yeh J-T, Tsou C-H, Huang C-Y, Chen K-N, Wu C-S, Chai W-L (2010) J Appl Polym Sci 116:680

    CAS  Google Scholar 

  30. Yuan H, Liu ZY, Ren J (2009) Polym Eng Sci 49(5):1004

    Article  CAS  Google Scholar 

  31. Wang RY, Wang SF, Zhang Y (2009) J Appl Polym Sci 113(6):3630

    Article  CAS  Google Scholar 

  32. Yang F, Qiu ZB (2011) J Appl Polym Sci 119(3):1426

    Article  CAS  Google Scholar 

  33. NatureWorks® PLA Polymer 6202D, Data Sheet (2006)

  34. Herrera R, Franco L, Rodríguez-Galán A, Puiggalí J (2002) J Polym Sci A Polym Chem 40:4141

    Article  CAS  Google Scholar 

  35. Shi XQ, Ito H, Kikutani T (2005) Polymer 46:11442

    Article  CAS  Google Scholar 

  36. Ou X, Cakmak M (2008) Polymer 49:5344

    Article  CAS  Google Scholar 

  37. Garlotta D (2002) J Polym Environ 9:63

    Article  Google Scholar 

  38. Cartier L, Lotz B (2000) Polymer 41:8909

    Article  CAS  Google Scholar 

  39. Cicero JA, Dorgan JR, Janzen J, Garrett J, Runt J, Lin JS (2002) J Appl Polym Sci 86:2839

    Article  CAS  Google Scholar 

  40. Fakirov S, Evstatiev M, Friedrich K (2002) In: Fakirov S (ed) Handbook of thermoplastic polyesters: homopolymers, copolymers, blends and composites. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  41. Evstatiev M, Schultz JM, Fakirov S, Friedrich K (1998) J Appl Polym Sci 67:723

    Article  CAS  Google Scholar 

  42. Evstatiev M, Fakirov S, Friedrich K (2000) Adv Polym Technol 19:249

    Article  CAS  Google Scholar 

  43. Fakirov S, Evstatiev M, Friedrich K (2002) In: Fakirov S (ed) Handbook of thermoplastic polyesters. Wiley-VCH, Weinhem

    Chapter  Google Scholar 

  44. Evstatiev M, Fakirov S, Friedrich K (2005) In: Friedrich K, Fakirov S, Zhang Z (eds) Polymer composites: from nano- to macro scale. Kluwer Academic Publidhers, Nowell

    Google Scholar 

  45. Evstatiev M, Fakirov S, Apostolov AA, Hristov H, Schultz JM (1992) Polym Eng Sci 32:964

    Article  CAS  Google Scholar 

  46. Xu H, Zhong G-J, Fu Q, Lei J, Jiang W, Hsiao B-S, Li Z-M (2012) ACS Appl. Mater Interfaces 4:6774

    Article  CAS  Google Scholar 

  47. Gan Z, Abe H, Kurokawa H, Doi Y (2001) Biomacromolecules 2:605

    Article  CAS  Google Scholar 

  48. Bousmina M (2005) In: 21st Annual meeting of the polymer processing society (PPS 21), Leipzig, 19–23 June, p 219 (Abstracts book)

  49. Kee DE, Zhong Y, Zheng Y, Janes D (2005) In: 21st Annual meeting of the polymer processing society (PPS 21), Leipzig, 19–23 June, p 222 (Abstracts book)

  50. Kalendova A, Peprnicek T, Kovarova L, Hrncirik J, Simonik J, Duchet J (2005) In: 21st Annual meeting of the polymer processing society (PPS 21), Leipzig, 19–23 June, p 223 (Abstracts book)

  51. Bismarck A, Mishra S, Lampe T (2005) In: Mohanty A, Misra M, Drzal LT (eds) Natural fibres, biopolymers, and biocomposites. CRC/Francis Taylor, Boca Raton

    Google Scholar 

  52. Gajdos J, Galic K, Kurtanjek Z, Cikovic N (2001) Polym Test 20:49

    Article  CAS  Google Scholar 

  53. Pino M, Duckett RA, Ward IM (2005) Polymer 46:4882

    Article  CAS  Google Scholar 

  54. Massey LK (2003) Permeability properties of plastics and elastomers—a guide to packaging and barrier materials. William Andrew Publishing, Norwich

    Google Scholar 

  55. Mai YW, Wong JSS, Li RKY, Lu C (2004) On the tearing toughness and permeability modelling of polymer nanocomposites. Society of Plastics Engineers, Chicago, pp 1785–1789

    Google Scholar 

  56. Liu RYF, Hu YS, Schiraldi DA, Hiltner A, Baer E (2004) J Appl Polym Sci 94:671

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Germany DAAD Foundation (Project 54391873), as well as of the Bulgarian Foundation for Research and Science, and Uta Reuter (Leibniz-Institut für Polymerforschung Dresden e.V.) for TEM support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-Q. Pei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evstatiev, M., Simeonova, S., Friedrich, K. et al. MFC-structured biodegradable poly(l-lactide)/poly(butylene adipate-co-terephatalate) blends with improved mechanical and barrier properties. J Mater Sci 48, 6312–6330 (2013). https://doi.org/10.1007/s10853-013-7431-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7431-5

Keywords

Navigation