Skip to main content
Log in

Developing an ecologically friendly isothermal bath to obtain a new class high-tenacity and high-modulus polypropylene fibers

  • Polymer Fibers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A number of production methods have been developed for high-performance fibers; however, most processes use toxic solvents or generate a lot of unwanted by-products. Our research resulted in the development of a new family of high-performance polypropylene (PP) fibers by utilizing a simple, ecologically friendly bath (ECOB). Various commodity polymers can be used with ECOB melt spinning system at high throughputs and performance benefits. Our treated as-spun PP fibers had a highly oriented, but not crystalline precursor morphology with f a up to 0.6 generating superior mechanical properties. After drawing at draw ratios of 1.49 at 120 °C, highly oriented crystalline and amorphous phases were achieved for the drawn fibers with f c and f a values of 0.95 and 0.87, respectively. This fine structure for ECOB-treated fibers resulted in tenacity close to 12 g/d, initial modulus higher than 150 g/d, and ultimate elongation at break of 20 %. The polymer melting point of the new fibrillar PP fibers increased by 9 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hearle JWS (2001) High performance fibres. Woodhead Publishing, Florida, p 2

    Book  Google Scholar 

  2. Kerr M, Chawla N, Chawla KK (2005) JOM 57(2):67. doi:10.1007/s11837-005-0219-6

    Article  CAS  Google Scholar 

  3. Mukhopadhyay S, Deopura BL, Alagirusamy R (2004) J Ind Text 33(4):245. doi:10.1177/1528083704044905

    Article  Google Scholar 

  4. Sheehan WC, Cole TB (1964) J Appl Polym Sci 8:2359. doi:10.1002/app.1964.070080528

    Article  CAS  Google Scholar 

  5. Huo H, Jiang S, An L, Jiachun F (2004) Macromolecules 37:2478. doi:10.1021/ma0358531

    Article  CAS  Google Scholar 

  6. Arvidson SA, Khan SA, Gorga RE (2010) Macromolecules 43:2916. doi:10.1021/ma1001645

    Article  CAS  Google Scholar 

  7. Karacan I, Benli H (2011) J Appl Polym Sci 122:3322. doi:10.1002/app.34440

    Article  CAS  Google Scholar 

  8. Li Z, Na B, Tian N, Lv R, Zou S (2012) J Appl Polym Sci 123:995. doi:10.1002/app.34541

    Article  CAS  Google Scholar 

  9. Lewin M (2007) Handbook of fiber chemistry, 3rd edn. CRC Press, Florida, p 238

    Google Scholar 

  10. Shahi ZTM, Mojtahedi MRM (2010) J Text I 101(6):547. doi:10.1080/00405000802597600

    Article  Google Scholar 

  11. Sakurai T, Nozue Y, Kasahara T, Mizunuma K, Yamaguchi N, Tashiro K, Amemiya Y (2005) Polymer 46(20):8846. doi:10.1016/j.polymer.2005.01.106

    Article  CAS  Google Scholar 

  12. Somani RH, Yang L, Sics I, Hsiao BS, Pogodina N, Winter HH, Agarwal P, Fruitwala H, Tsou A. (2012) Orientation-induced crystallization in isotactic polypropylene melt by step-shear deformation. http://rheology.tripod.com/z09.13.pdf. Accessed 7 August 2012

  13. Misra S, Lu FM, Spruiell JE, Richeson GC (1995) J Appl Polym Sci 56:1761. doi:10.1002/app.1995.070561307

    Article  CAS  Google Scholar 

  14. Taylor WN, Clark ES (1978) Polym Eng Sci 18(6):518. doi:10.1002/pen.760180615

    Article  CAS  Google Scholar 

  15. Ohta T (1983) Polym Eng Sci 23(13):697. doi:10.1002/pen.760231302

    Article  CAS  Google Scholar 

  16. Samuels RJ (1968) J Polym Sci A1(6):1101. doi:10.1002/pol.1968.160060606

    Google Scholar 

  17. Suzuki A, Sugimura T, Kunugi TO (2001) J Appl Polym Sci 81:600. doi:0.1002/app.1475

    Article  CAS  Google Scholar 

  18. Chawla KK (2005) Fibrous materials. Cambridge University Press, Cambridge, p 67

    Google Scholar 

  19. Coates PD, Ward IM (1979) Polymer 20:1553. doi:10.1016/0032-3861(79)90024-7

    Article  CAS  Google Scholar 

  20. Cebe P, Grub DB (1985) J Mater Sci 20:4465. doi:10.1007/BF00559336

    Article  CAS  Google Scholar 

  21. Shaw MT (1975) J Appl Polym Sci 19:2811. doi:10.1002/app.1975.070191016

    Article  CAS  Google Scholar 

  22. Laughner MP, Harrison IR (1988) J Appl Polym Sci 36:899. doi:10.1002/app.1988.070360413

    Article  CAS  Google Scholar 

  23. Kristiansen M, Tervoort T, Smith P (2003) Polymer 44:5885. doi:10.1016/S0032-3861(03)00538-X

    Article  CAS  Google Scholar 

  24. Machiels AGC, Denys KFJ, Van Dam J, De Boer AP (1997) Polym Eng Sci 37(1):59. doi:10.1002/pen.11645

    Article  CAS  Google Scholar 

  25. Echevarria GG, Eguiazabal JI, Nazabal J (2000) Polym Composite 27(6):864. doi:10.1002/pc.10241

    Article  Google Scholar 

  26. Hwan LS, Ryoun YJ (2008) J Appl Polym Sci 109:1221. doi:10.1002/app.28222

    Article  Google Scholar 

  27. Ruan WH, Mai YL, Wang XH, Rong MZ, Zhang MQ (2007) Compos Sci Technol 67:2747. doi:10.1016/j.compscitech.2007.02.004

    Article  CAS  Google Scholar 

  28. Garcia M, Van VG, Jain S, Schrauwen BA, Sarkissov A, Van ZWE (2004) Rev Adv Materials Sci 6(2):169

    CAS  Google Scholar 

  29. Madani M (2010) J Reinf Plast Comp 29(13):1999. doi:10.1177/0731684409341089

    Article  CAS  Google Scholar 

  30. Cuculo JA et al (1992) US patent: US005149480A. Melt spinning of ultra-oriented crystalline polyester filaments

  31. Cuculo JA et al (1998) US patent: US005733653A. Ultra-oriented crystalline filaments and method of making same

  32. Chen P, Afshari M, Cuculo JA, Kotek R (2009) Macromolecules 42:5437. doi:10.1021/ma900669r

    Article  CAS  Google Scholar 

  33. Lin CY, Tucker PA, Cuculo JA (1992) J Appl Polym Sci 46:531. doi:10.1002/app.1992.070460320

    Article  CAS  Google Scholar 

  34. Hotter JF, Cuculo JA, Tucker PA, Annis BK (1998) J Appl Polym Sci 69:2051. doi:10.1002/(SICI)1097

    Article  CAS  Google Scholar 

  35. Mukhopadhyay S, Deopura BL, Alagirusamy R (2005) Drawing of polypropylene filaments on a gradient heater. JOTI 96(5):349. doi:10.1533/joti.2005.0043

    Article  CAS  Google Scholar 

  36. Bhuvanesh YC, Gupta VB (1995) Polymer 36(19):3669. doi:10.1016/0032-3861(95)93768-H

    Article  CAS  Google Scholar 

  37. Lin KY, Xanthos M, Sirkar KK (2009) Polymer 50:4671. doi:10.1016/j.polymer.2009.07.014

    Article  CAS  Google Scholar 

  38. Samuels RJ (1968) Quantitative characterization of deformation in drawn polypropylene films. J Polym Sci A2 6(6):1101. doi:10.1002/pol.1968.160060606

    Google Scholar 

  39. Brandrup J, Immergut EH (1989) Polymer handbook, 3rd edn. Wiley, New York, p V29

    Google Scholar 

  40. Exxon MobilPP3155 Homopolymer Grade (2011) http://www.matweb.com/search/datasheet.aspx?matguid=d32d7bd5f1ed4c1dbd86e2b7f6b63297. Accessed 17 June 2011

  41. Total Polypropylene 3462 (2011) http://www.lonestarchemical.com/datasheets/polypropylene/72-total-polypropylene-3462. Accessed 17 June 2011

  42. Takeuchi Y, Shuto Y, Yamamoto F (1988) Band pattern development in shear-oriented thermotropic copolyester extrudates. Polymer 29(4):605. doi:10.1016/0032-3861(88)90073-0

    Article  CAS  Google Scholar 

  43. Elices M, Llorca J (2002) Fiber fracture. Elsevier Science Ltd, Oxford, p 63

    Google Scholar 

  44. Huo H, Jiang S, An L (2004) Influence of shear on crystallization behavior of the β phase in isotactic polypropylene with β-nucleating agent. Macromolecules 37:2478. doi:10.1021/ma0358531

    Article  CAS  Google Scholar 

  45. Zhang H, Shi M, Zhang J, Wang S (2003) J Appl Polym Sci 89:2757. doi:10.1002/app.12448

    Article  CAS  Google Scholar 

  46. Tretinnikov ON, Ogata S, Ikada Y (1998) Polymer 39(24):6115. doi:10.1016/S0032-3861(98)00075-5

    Article  CAS  Google Scholar 

  47. Salem DR (2008) Unique Microstructural Features of Innegra™ High Modulus Polypropylene Fibers (2012) http://wikinnegra.com/Wiki%20Pages/Unique%20Microstructural%20Features%20of%20Innegra%20High%20Modulus%20Polypropylene%20Fibers.aspx. Accessed 28 March 2012

  48. Farrow B, Ford JE (1964) Nature 201(4951):183. doi:10.1038/201183a0

    Article  Google Scholar 

  49. Shahin MM (2003) J Appl Polym Sci 90:360. doi:10.1002/app.12564

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Birgit Andersen of the College of Textiles, at NCSU for helping us with X-ray and thermal measurements. ATEX Inc. supported this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kotek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avci, H., Kotek, R. & Yoon, J. Developing an ecologically friendly isothermal bath to obtain a new class high-tenacity and high-modulus polypropylene fibers. J Mater Sci 48, 7791–7804 (2013). https://doi.org/10.1007/s10853-013-7427-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7427-1

Keywords

Navigation