Skip to main content
Log in

Crosslinking poly(allylamine) fibers electrospun from basic and acidic solutions

  • Polymer Fibers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mechanically robust, non-toxic polymer fiber mats are promising materials for a range of biomedical applications; however, further research into enhancing polymer selection is needed. In this study, poly(allylamine) (PAH), an amine-containing polyelectrolyte, was successfully electrospun from aqueous solutions into continuous, cylindrical fibers with a mean diameter of 150 ± 41 nm. A one-step crosslinking method using glutaraldehyde provides insight into the chemical and morphological changes that result from altering the molar ratio of amine to aldehyde groups, whereas a two-step crosslinking method yielded chemically and mechanically robust mats. These results indicate PAH fibrous mats synthesized from aqueous solutions could potentially be applied in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Raghavan P, Lim DH, Ahn JH et al (2012) React Funct Polym 72:915. doi:10.1016/j.reactfunctpolym.2012.08.018

    Article  CAS  Google Scholar 

  2. Bashur CA, Dahlgren LA, Goldstein AS (2006) Biomaterials 27:5681. doi:10.1016/j.biomaterials.2006.07.005

    Article  CAS  Google Scholar 

  3. Grafahrend D, Heffels KH, Beer MV et al (2011) Nat Mater 10:67. doi:10.1038/nmat2904

    Article  CAS  Google Scholar 

  4. Tan EPS, Ng SY, Lim CT (2005) Biomaterials 26:1453. doi:10.1016/j.biomaterials.2004.05.021

    Article  CAS  Google Scholar 

  5. Gupta VK, Suhas (2009) J Environ Manag 90:2313. doi:10.1016/j.jenvman.2008.11.017

    Article  CAS  Google Scholar 

  6. Liang D, Hsiao BS, Chu B (2007) Adv Drug Deliv Rev 59:1392. doi:10.1016/j.addr.2007.04.021

    Article  CAS  Google Scholar 

  7. Corey JM, Lin DY, Mycek KB et al (2007) J Biomed Mater Res A 83A:636. doi:10.1002/jbm.a.31285

    Article  CAS  Google Scholar 

  8. Yoo HS, Kim TG, Park TG (2009) Adv Drug Deliv Rev 61:1033. doi:10.1016/j.addr.2009.07.007

    Article  CAS  Google Scholar 

  9. Guibal E (2004) Sep Purif Technol 38:43. doi:10.1016/j.seppur.2003.10.004

    Article  CAS  Google Scholar 

  10. Engel Y, Schiffman JD, Goddard JM, Rotello VM (2012) Mater Today 15:478. doi:10.1016/S1369-7021(12)70217-1

    Article  CAS  Google Scholar 

  11. Kobayashi S, Tokunoh M, Saegusa T, Mashio F (1985) Macromolecules 18:2357. doi:10.1021/ma00154a004

    Article  CAS  Google Scholar 

  12. Kobayashi S, Suh KD, Shirokura Y (1989) Macromolecules 22:2363. doi:10.1021/ma00195a062

    Article  CAS  Google Scholar 

  13. Choi J, Rubner MF (2005) Macromolecules 38:116. doi:10.1021/ma048596o

    Article  CAS  Google Scholar 

  14. Ochiai H, Anabuki Y, Kojima O, Tominaga K, Murakami I (1990) J Polym Sci B Polym Phys 28:233. doi:10.1002/polb.1990.090280209

    Article  CAS  Google Scholar 

  15. Petrov AI, Antipov AA, Sukhorukov GB (2003) Macromolecules 36:10079. doi:10.1021/ma034516p

    Article  CAS  Google Scholar 

  16. Fang MM, Kim CH, Saupe GB et al (1999) Chem Mater 11:1526. doi:10.1021/cm981066k

    Article  CAS  Google Scholar 

  17. Decher G (1997) Science 277:1232. doi:10.1126/science.277.5330.1232

    Article  CAS  Google Scholar 

  18. Ladam G, Schaad P, Voegel JC, Schaaf P, Decher G, Cuisinier F (2000) Langmuir 16:1249. doi:10.1021/la990650k

    Article  CAS  Google Scholar 

  19. Ruths J, Essler F, Decher G, Riegler H (2000) Langmuir 16:8871. doi:10.1021/la000257a

    Article  CAS  Google Scholar 

  20. Krasemann L, Tieke B (2000) Langmuir 16:287. doi:10.1021/la991240z

    Article  CAS  Google Scholar 

  21. Schauer CL, Chen MS, Price RR, Schoen PE, Ligler FS (2004) Environ Sci Technol 38:4409. doi:10.1021/es035047+

    Article  CAS  Google Scholar 

  22. Antipov AA, Sukhorukov GB, Donath E, Mohwald H (2001) J Phys Chem B 105:2281. doi:10.1021/jp002184+

    Article  CAS  Google Scholar 

  23. Radtchenko IL, Sukhorukov GB, Leporatti S, Khomutov GB, Donath E, Mohwald H (2000) J Colloid Interface Sci 230:272. doi:10.1006/jcis.2000.7068

    Article  CAS  Google Scholar 

  24. Boussif O, Delair T, Brua C, Veron L, Pavirani A, Kolbe HVJ (1999) Bioconjug Chem 10:877. doi:10.1021/bc9900439

    Article  CAS  Google Scholar 

  25. Pathak A, Aggarwal A, Kurupati RK et al (2007) Pharm Res 24:1427. doi:10.1007/s11095-007-9259-7

    Article  CAS  Google Scholar 

  26. Nimesh S, Kumar R, Chandra R (2006) Int J Pharm 320:143. doi:10.1016/j.ijpharm.2006.03.050

    Article  CAS  Google Scholar 

  27. Thompson CJ, Tetley L, Uchegbu IF, Cheng WP (2009) Int J Pharm 376:46. doi:10.1016/j.ijpharm.2009.04.014

    Article  CAS  Google Scholar 

  28. Chronakis IS, Milosevic B, Frenot A, Ye L (2006) Macromolecules 39:357. doi:10.1021/ma052091w

    Article  CAS  Google Scholar 

  29. Son WK, Youk JH, Lee TS, Park WH (2004) Polymer 45:2959. doi:10.1016/j.polymer.2004.03.006

    Article  CAS  Google Scholar 

  30. Jacobs V, Anandjiwala RD, Maaza M (2010) J Appl Polym Sci 115:3130. doi:10.1002/app.31396

    Article  CAS  Google Scholar 

  31. Patanaik A, Jacobs V, Anandjiwala RD (2011) J Nanosci Nanotechnol 11:1103. doi:10.1166/jnn.2011.3611

    Article  CAS  Google Scholar 

  32. Atchison JS, Schauer CL (2011) Sensors 11:10372. doi:10.3390/s111110372

    Article  CAS  Google Scholar 

  33. Kundu S, Gill RS, Saraf RF (2011) J Phys Chem C 115:15845. doi:10.1021/jp203851s

    Article  CAS  Google Scholar 

  34. Chunder A, Sarkar S, Yu Y, Zhai L (2007) Colloids Surf B 58:172. doi:10.1016/j.colsurfb.2007.03.004

    Article  CAS  Google Scholar 

  35. Schiffman JD, Schauer CL (2007) Biomacromolecules 8:594. doi:10.1021/bm060804s

    Article  CAS  Google Scholar 

  36. Tuong SD, Lee H, Kim H (2008) Macromol Res 16:373. doi:10.1007/BF03218531

    Article  CAS  Google Scholar 

  37. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) Biotechniques 37:790

    CAS  Google Scholar 

  38. Yoshikawa Y, Matsuoka H, Ise N (1986) Br Polym J 18:242. doi:10.1002/pi.4980180408

    Article  CAS  Google Scholar 

  39. Schiffman JD, Schauer CL (2007) Biomacromolecules 8:2665. doi:10.1021/bm7006983

    Article  CAS  Google Scholar 

  40. McKee MG, Hunley MT, Layman JM, Long TE (2006) Macromolecules 39:575. doi:10.1021/ma051786u

    Article  CAS  Google Scholar 

  41. Gupta P, Elkins C, Long TE, Wilkes GL (2005) Polymer 46:4799. doi:10.1016/j.polymer.2005.04.021

    Article  CAS  Google Scholar 

  42. McKee MG, Wilkes GL, Colby RH, Long TE (2004) Macromolecules 37:1760. doi:10.1021/ma035689h

    Article  CAS  Google Scholar 

  43. Okuda K, Urabe I, Yamada Y, Okada H (1991) J Ferment Bioeng 71:100. doi:10.1016/0922-338x(91)90231-5

    Article  CAS  Google Scholar 

  44. Stachewicz U, Stone CA, Willis CR, Barber AH (2012) J Mater Chem 22:22935. doi:10.1039/c2jm33807f

    Article  CAS  Google Scholar 

  45. Lulevich VV, Vinogradova OI (2004) Langmuir 20:2874. doi:10.1021/la049934h

    Article  CAS  Google Scholar 

  46. Pai C-L, Boyce MC, Rutledge GC (2011) Polymer 52:2295. doi:10.1016/j.polymer.2011.03.041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Christopher Pastore of Philadelphia University for use of their Instron and Dr. Christopher Li of Drexel University for the use of the Kawabata. J.D.S. would like to thank the Koerner Family Fellowship and Graduate Assistance in Areas of National Need-Drexel Research and Education in Advanced Materials (GAANN-DREAM) (P200A060117), which is funded by the Department of Education’s Office of Postsecondary Education for funding. M.A.K. thanks the Institute of Food Technologists—Philadelphia Chapter and the Drexel University Freshmen Design Engineering Fellowship. A.E.D. thanks the Philadelphia SWE for the Dow Chemical Company Award and acknowledges her GAANN Fellowship P200A070496 and NSF-IGERT 0654313. U.G.K.W. thanks Anne Stevens for the generous support of her research and group at Drexel University. The authors wish to acknowledge funding by the NSF DMR Grant No. 0907572, NSF CMMI Grant No. 0804543 and Ben Franklin Nanotechnology Institute, Philadelphia, PA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline L. Schauer.

Additional information

Jessica D. Schiffman and Marjorie A. Kiechel contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiffman, J.D., Kiechel, M.A., Donius, A.E. et al. Crosslinking poly(allylamine) fibers electrospun from basic and acidic solutions. J Mater Sci 48, 7856–7862 (2013). https://doi.org/10.1007/s10853-013-7426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7426-2

Keywords

Navigation