Skip to main content

Advertisement

Log in

The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The coefficient of thermal expansion (CTE) is a key design parameter for thermoelectric (TE) materials, especially in energy harvesting applications since stresses generated by CTE mismatch, thermal gradients, and thermal transients scale with the CTE of the TE material. For the PbTe–PbS-based TE material (Pb0.95Sn0.05Te)0.92(PbS)0.08—0.055 % PbI2 over the temperature ranges of 293–543 and 293–773 K, a CTE, αavg, of 21.4 ± 0.3 × 10−6 K−1 was measured using (1) dilatometry and (2) high-temperature X-ray diffraction (HT-XRD) for powder and bulk specimens. The CTE values measured via dilatometry and HT-XRD are similar to the literature values for other Pb-based chalcogenides. However, the processing technique was found to impact the thermal expansion such that bloating (which leads to a hysteresis in thermal expansion) occurred for hot pressed billets heated to temperatures >603 K while specimens fabricated by pulsed electric current sintering and as-cast specimens did not show a bloating-modified thermal expansion even for temperatures up to 663 K. The relationship of bloating to the processing techniques is discussed, along with a possible mechanism for inhibiting bloating in powder processed specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Huang BX, Malzbender J, Steinbrech RW (2011) J Mater Sci 46:4937. doi:10.1007/s10853-011-5406-y

    Article  CAS  Google Scholar 

  2. Sondergaard M, Christensen M, Borup KA, Yin H, Iversen BB (2013) J Mater Sci 48:2002. doi:10.1007/s10853-012-6967-0

    Article  CAS  Google Scholar 

  3. Ren F, Case ED, Ni JE, Timm EJ, Lara-Curzio E, Trejo RM, Lin CH, Kanatzidis MG (2009) Philos Mag 89:143

    Article  CAS  Google Scholar 

  4. Ren F, Hall BD, Case ED, Timm EJ, Trejo RM, Meisner RA, Lara-Curzio E (2009) Philos Mag 89:1439

    Article  CAS  Google Scholar 

  5. Schmidt RD, Case ED, Ni JE, Sakamoto JS, Trejo RM, Lara-Curzio E (2012) Philos Mag 92:727

    Article  CAS  Google Scholar 

  6. Schmidt RD, Case ED, Ni JE, Sakamoto JS, Trejo RM, Lara-Curzio E, Payzant EA, Kirkham MJ, Peascoe-Meisner RA (2012) Philos Mag 92:1261

    Article  CAS  Google Scholar 

  7. Salvador JR, Yang J, Shi X, Wang H, Wereszczak AA, Kong H, Uher C (2009) Philos Mag 89:1517

    Article  CAS  Google Scholar 

  8. Rogl G, Zhang L, Rogl P, Grytsiv A, Falmbigl M, Rajs D, Kreigisch M, Muller H, Bauer E, Koppensteiner J, Schranz W, Zehetbauer M, Henkie Z, Maple MB (2010) J Appl Phys 107:043507

    Article  Google Scholar 

  9. Ren F, Case ED, Sootsman JR, Kanatzidis MG, Kong H, Uher C, Lara-Curzio E, Trejo RM (2008) Acta Mater 56:5954

    Article  CAS  Google Scholar 

  10. Oppenheimer S, Dunand DC (2010) Acta Mater 58:4387

    Article  CAS  Google Scholar 

  11. O’Brien MH, Hunter O Jr, Case ED (1985) J Mater Sci Lett 4:367

    Article  Google Scholar 

  12. Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York

    Google Scholar 

  13. Ni JE, Case ED, Stewart RC, Wu C-I, Hogan TP, Kanatzidis MG (2012) J Electron Mater 41:1153

    Article  CAS  Google Scholar 

  14. Ni JE, Ren F, Case ED, Timm EJ (2009) Mater Chem Phys 118:459

    Article  CAS  Google Scholar 

  15. Rice RW (1998) Porosity of ceramics. Marcel Dekker, New York

    Google Scholar 

  16. Goldsmid HJ (2011) J Electron Mater 40:1254

    Article  CAS  Google Scholar 

  17. Androulakis J, Lin CH, Kong HJ, Uher C, Wu CI, Hogan TP, Cook BA, Caillat T, Paraskevopoulos KM, Kanatzidis MG (2007) J Am Chem Soc 129:9780

    Article  CAS  Google Scholar 

  18. Ren F, Case ED, Timm EJ, Schock HJ (2008) J Alloys Compd 455:340

    Article  CAS  Google Scholar 

  19. Ren F, Case ED, Timm EJ, Schock HJ (2007) Philos Mag 87:4907

    Article  CAS  Google Scholar 

  20. Pilchak AL, Ren F, Case ED, Timm EJ, Schock HJ, Wu C-I, Hogan TP (2007) Philos Mag 87:4567

    Article  CAS  Google Scholar 

  21. Hall BD, Case ED, Ren F, Johnson J, Timm EJ (2009) Mater Chem Phys 113:497

    Article  CAS  Google Scholar 

  22. Fullman RL (1953) Trans AIME 197:447

    CAS  Google Scholar 

  23. Hayun S, Kalabukhov S, Ezersky V, Darieland MP, Frage N (2010) Ceram Int 36:451

    Article  CAS  Google Scholar 

  24. Hayun S, Paris V, Mitrani R, Kalabukhov S, Dariel MP, Zaretsky E, Frage N (2012) Ceram Int 38:6335

    Article  CAS  Google Scholar 

  25. Groza JR, Risbud SH, Yamazaki K (1992) J Mater Res 7:2643

    Article  CAS  Google Scholar 

  26. Groza JR, Garcia M, Schneider JA (2001) J Mater Res 16:286

    Article  CAS  Google Scholar 

  27. Risbud SH, Groza JR, Kim MJ (1994) Philos Mag 69:525

    Article  CAS  Google Scholar 

  28. Rice RW (2000) Mechanical properties of ceramics and composites. Marcel Dekker Inc, New York

    Book  Google Scholar 

  29. Charvat FR, Kingery WD (1957) J Am Ceram Soc 40:306

    Article  CAS  Google Scholar 

  30. Panigrahi BB, Dabhade VV, Godkhindi MM (2005) Mater Lett 59:2539

    Article  CAS  Google Scholar 

  31. Turi T, Erb U (1995) Mater Sci Eng A 204:34

    Article  Google Scholar 

  32. Houston B, Strakna RE, Belson HS (1968) J Appl Phys 39:3913

    Article  CAS  Google Scholar 

  33. Okamoto NL, Nakano T, Tanaka K, Inui H (2008) J Appl Phys 104:013529

    Article  Google Scholar 

  34. Auvray JM, Gault C, Huger M (2007) J Eur Ceram Soc 27:3489

    Article  CAS  Google Scholar 

  35. Auvray JM, Gault C, Huger M (2008) J Eur Ceram Soc 28:1953

    Article  CAS  Google Scholar 

  36. Bahloul O, Chotard T, Huger M, Gault C (2010) J Mater Sci 45:3652. doi:10.1007/s10853-010-4410-y

    Article  CAS  Google Scholar 

  37. Giordano L, Viviania M, Bottinoa C, Buscagliaa MT, Buscagliaa V, Nannib P (2002) J Eur Ceram Soc 22:1811

    Article  CAS  Google Scholar 

  38. Hasselman DPH, Donaldson KY, Anderson EM, Johnson TA (1993) J Am Ceram Soc 76:2180

    Article  CAS  Google Scholar 

  39. Kakroudi MG, Yeugo-Fogaing E, Huger M, Gault C, Chotard T (2009) J Eur Ceram Soc 29:3197

    Article  Google Scholar 

  40. Nonnet E, Lequeux N, Boch P (1999) J Eur Ceram Soc 19:1575

    Article  CAS  Google Scholar 

  41. Bush EA, Hummel FA (1958) J Am Ceram Soc 41:189

    Article  CAS  Google Scholar 

  42. Bush EA, Hummel FA (1959) J Am Ceram Soc 42:388

    Article  CAS  Google Scholar 

  43. Chotard T, Soro J, Lemercier H, Huger M, Gault C (2008) J Eur Ceram Soc 28:2129

    Article  CAS  Google Scholar 

  44. Doncieux A, Stagnol D, Huger M, Chotard T, Gault C, Ota T, Hashimoto S (2008) J Mater Sci 43:4167. doi:10.1007/s10853-007-2414-z

    Article  CAS  Google Scholar 

  45. Kuszyk JA, Bradt RC (1973) J Am Ceram Soc 56:420

    Article  CAS  Google Scholar 

  46. Babelot C, Guignard A, Huger M, Gault C, Chotard T, Ota T, Adachi N (2011) J Mater Sci 46:1211. doi:10.1007/s10853-010-4897-2

    Article  CAS  Google Scholar 

  47. Yamane H, Ogawara K, Omori M, Hirai T (1995) J Am Ceram Soc 78:1230

    Article  CAS  Google Scholar 

  48. Prisco LP, Romao CP, Rizzo F, White MA, Marinkovic BA (2013) J Mater Sci 48:2986. doi:10.1007/s10853-012-7076-9

    Article  CAS  Google Scholar 

  49. Case ED, Smyth JR, Hunter O (1983) In: Bradt RC, Evans AG, Hasselman DPH, Lange FF (eds) Fracture mechanics of ceramics, vol 5. Plenum Press, New York, p 507

    Chapter  Google Scholar 

  50. Alfano M, Di Girolamo G, Pagnotta L, Sun D, Zekonyte J, Wood RJK (2010) J Mater Sci 45:2662. doi:10.1007/s10853-010-4245-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Office of Naval Research Grant N00014-08-1-0613. Equipment purchases were funded by the Defense University Research Instrumentation Program (DURIP) Grant Number N00014-07-1-0735 (Resonant Ultrasound Spectroscopy apparatus and the laser scattering apparatus) and N00014-09-1-0785 (PECS apparatus) Office of Naval Research. Research through the Oak Ridge National Laboratory’s High Temperature Materials Laboratory User Program was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. The authors also acknowledge the Department of Energy, “Revolutionary Materials for Solid State Energy Conversion Center,” an Energy Frontiers Research Center funded by the US Department of Energy, Office of Science, Office of Basic energy Sciences under award number DE-SC0001054 for financial support of Robert Schmidt for the powder processing done in this study as well as support of Jennifer Ni, Edgar Lara-Curzio, and Eldon Case for the data analysis and paper preparation stage of this research. The authors also acknowledge Ed Timm, Mechanical Engineering Department, Michigan State University and Karl Dersch, Computer and Electrical Engineering Department, for their assistance with hot pressing and cutting selected hot pressed specimens and PECS apparatus. All microscopy was performed at the Center for Advanced Microscopy at Michigan State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eldon D. Case.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, J.E., Case, E.D., Schmidt, R.D. et al. The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating. J Mater Sci 48, 6233–6244 (2013). https://doi.org/10.1007/s10853-013-7421-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7421-7

Keywords