Abstract
The coefficient of thermal expansion (CTE) is a key design parameter for thermoelectric (TE) materials, especially in energy harvesting applications since stresses generated by CTE mismatch, thermal gradients, and thermal transients scale with the CTE of the TE material. For the PbTe–PbS-based TE material (Pb0.95Sn0.05Te)0.92(PbS)0.08—0.055 % PbI2 over the temperature ranges of 293–543 and 293–773 K, a CTE, αavg, of 21.4 ± 0.3 × 10−6 K−1 was measured using (1) dilatometry and (2) high-temperature X-ray diffraction (HT-XRD) for powder and bulk specimens. The CTE values measured via dilatometry and HT-XRD are similar to the literature values for other Pb-based chalcogenides. However, the processing technique was found to impact the thermal expansion such that bloating (which leads to a hysteresis in thermal expansion) occurred for hot pressed billets heated to temperatures >603 K while specimens fabricated by pulsed electric current sintering and as-cast specimens did not show a bloating-modified thermal expansion even for temperatures up to 663 K. The relationship of bloating to the processing techniques is discussed, along with a possible mechanism for inhibiting bloating in powder processed specimens.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Huang BX, Malzbender J, Steinbrech RW (2011) J Mater Sci 46:4937. doi:10.1007/s10853-011-5406-y
Sondergaard M, Christensen M, Borup KA, Yin H, Iversen BB (2013) J Mater Sci 48:2002. doi:10.1007/s10853-012-6967-0
Ren F, Case ED, Ni JE, Timm EJ, Lara-Curzio E, Trejo RM, Lin CH, Kanatzidis MG (2009) Philos Mag 89:143
Ren F, Hall BD, Case ED, Timm EJ, Trejo RM, Meisner RA, Lara-Curzio E (2009) Philos Mag 89:1439
Schmidt RD, Case ED, Ni JE, Sakamoto JS, Trejo RM, Lara-Curzio E (2012) Philos Mag 92:727
Schmidt RD, Case ED, Ni JE, Sakamoto JS, Trejo RM, Lara-Curzio E, Payzant EA, Kirkham MJ, Peascoe-Meisner RA (2012) Philos Mag 92:1261
Salvador JR, Yang J, Shi X, Wang H, Wereszczak AA, Kong H, Uher C (2009) Philos Mag 89:1517
Rogl G, Zhang L, Rogl P, Grytsiv A, Falmbigl M, Rajs D, Kreigisch M, Muller H, Bauer E, Koppensteiner J, Schranz W, Zehetbauer M, Henkie Z, Maple MB (2010) J Appl Phys 107:043507
Ren F, Case ED, Sootsman JR, Kanatzidis MG, Kong H, Uher C, Lara-Curzio E, Trejo RM (2008) Acta Mater 56:5954
Oppenheimer S, Dunand DC (2010) Acta Mater 58:4387
O’Brien MH, Hunter O Jr, Case ED (1985) J Mater Sci Lett 4:367
Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York
Ni JE, Case ED, Stewart RC, Wu C-I, Hogan TP, Kanatzidis MG (2012) J Electron Mater 41:1153
Ni JE, Ren F, Case ED, Timm EJ (2009) Mater Chem Phys 118:459
Rice RW (1998) Porosity of ceramics. Marcel Dekker, New York
Goldsmid HJ (2011) J Electron Mater 40:1254
Androulakis J, Lin CH, Kong HJ, Uher C, Wu CI, Hogan TP, Cook BA, Caillat T, Paraskevopoulos KM, Kanatzidis MG (2007) J Am Chem Soc 129:9780
Ren F, Case ED, Timm EJ, Schock HJ (2008) J Alloys Compd 455:340
Ren F, Case ED, Timm EJ, Schock HJ (2007) Philos Mag 87:4907
Pilchak AL, Ren F, Case ED, Timm EJ, Schock HJ, Wu C-I, Hogan TP (2007) Philos Mag 87:4567
Hall BD, Case ED, Ren F, Johnson J, Timm EJ (2009) Mater Chem Phys 113:497
Fullman RL (1953) Trans AIME 197:447
Hayun S, Kalabukhov S, Ezersky V, Darieland MP, Frage N (2010) Ceram Int 36:451
Hayun S, Paris V, Mitrani R, Kalabukhov S, Dariel MP, Zaretsky E, Frage N (2012) Ceram Int 38:6335
Groza JR, Risbud SH, Yamazaki K (1992) J Mater Res 7:2643
Groza JR, Garcia M, Schneider JA (2001) J Mater Res 16:286
Risbud SH, Groza JR, Kim MJ (1994) Philos Mag 69:525
Rice RW (2000) Mechanical properties of ceramics and composites. Marcel Dekker Inc, New York
Charvat FR, Kingery WD (1957) J Am Ceram Soc 40:306
Panigrahi BB, Dabhade VV, Godkhindi MM (2005) Mater Lett 59:2539
Turi T, Erb U (1995) Mater Sci Eng A 204:34
Houston B, Strakna RE, Belson HS (1968) J Appl Phys 39:3913
Okamoto NL, Nakano T, Tanaka K, Inui H (2008) J Appl Phys 104:013529
Auvray JM, Gault C, Huger M (2007) J Eur Ceram Soc 27:3489
Auvray JM, Gault C, Huger M (2008) J Eur Ceram Soc 28:1953
Bahloul O, Chotard T, Huger M, Gault C (2010) J Mater Sci 45:3652. doi:10.1007/s10853-010-4410-y
Giordano L, Viviania M, Bottinoa C, Buscagliaa MT, Buscagliaa V, Nannib P (2002) J Eur Ceram Soc 22:1811
Hasselman DPH, Donaldson KY, Anderson EM, Johnson TA (1993) J Am Ceram Soc 76:2180
Kakroudi MG, Yeugo-Fogaing E, Huger M, Gault C, Chotard T (2009) J Eur Ceram Soc 29:3197
Nonnet E, Lequeux N, Boch P (1999) J Eur Ceram Soc 19:1575
Bush EA, Hummel FA (1958) J Am Ceram Soc 41:189
Bush EA, Hummel FA (1959) J Am Ceram Soc 42:388
Chotard T, Soro J, Lemercier H, Huger M, Gault C (2008) J Eur Ceram Soc 28:2129
Doncieux A, Stagnol D, Huger M, Chotard T, Gault C, Ota T, Hashimoto S (2008) J Mater Sci 43:4167. doi:10.1007/s10853-007-2414-z
Kuszyk JA, Bradt RC (1973) J Am Ceram Soc 56:420
Babelot C, Guignard A, Huger M, Gault C, Chotard T, Ota T, Adachi N (2011) J Mater Sci 46:1211. doi:10.1007/s10853-010-4897-2
Yamane H, Ogawara K, Omori M, Hirai T (1995) J Am Ceram Soc 78:1230
Prisco LP, Romao CP, Rizzo F, White MA, Marinkovic BA (2013) J Mater Sci 48:2986. doi:10.1007/s10853-012-7076-9
Case ED, Smyth JR, Hunter O (1983) In: Bradt RC, Evans AG, Hasselman DPH, Lange FF (eds) Fracture mechanics of ceramics, vol 5. Plenum Press, New York, p 507
Alfano M, Di Girolamo G, Pagnotta L, Sun D, Zekonyte J, Wood RJK (2010) J Mater Sci 45:2662. doi:10.1007/s10853-010-4245-6
Acknowledgements
The authors acknowledge the financial support of Office of Naval Research Grant N00014-08-1-0613. Equipment purchases were funded by the Defense University Research Instrumentation Program (DURIP) Grant Number N00014-07-1-0735 (Resonant Ultrasound Spectroscopy apparatus and the laser scattering apparatus) and N00014-09-1-0785 (PECS apparatus) Office of Naval Research. Research through the Oak Ridge National Laboratory’s High Temperature Materials Laboratory User Program was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. The authors also acknowledge the Department of Energy, “Revolutionary Materials for Solid State Energy Conversion Center,” an Energy Frontiers Research Center funded by the US Department of Energy, Office of Science, Office of Basic energy Sciences under award number DE-SC0001054 for financial support of Robert Schmidt for the powder processing done in this study as well as support of Jennifer Ni, Edgar Lara-Curzio, and Eldon Case for the data analysis and paper preparation stage of this research. The authors also acknowledge Ed Timm, Mechanical Engineering Department, Michigan State University and Karl Dersch, Computer and Electrical Engineering Department, for their assistance with hot pressing and cutting selected hot pressed specimens and PECS apparatus. All microscopy was performed at the Center for Advanced Microscopy at Michigan State University.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ni, J.E., Case, E.D., Schmidt, R.D. et al. The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating. J Mater Sci 48, 6233–6244 (2013). https://doi.org/10.1007/s10853-013-7421-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-013-7421-7


