Skip to main content
Log in

Threshold behavior of phase transition characteristics in germanium telluride glasses doped with Ag

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this article, the overall phase transition behavior of a Ge–Te–Ag system prepared by co-sputtering Ag and pure GeTe was investigated over a wide Ag composition (0–39.3 mol%). Crystallization temperature was determined through an electrical resistance analysis. The crystalline phase was analyzed with X-ray diffraction measurement, selected area electron diffraction patterns, and high resolution transmission electron microscopy to study the effects of Ag incorporation into GeTe. Optical static tests were conducted to measure the energy of crystallization, and a crystallization kinetics study was also performed using the Johnson–Mehl–Avrami model. Optical band gap was also measured using a UV–Vis–NIR spectrophotometer. We found that the system displayed a compositional threshold behavior, wherein crystallization temperature first decreased with increasing Ag content and then increased with further increases in Ag content. Crystallization kinetics and crystallinity also showed the compositional threshold behaviors at the critical Ag composition. From understanding of the origin of these results, we expect this research to provide a means of manipulating intrinsic characteristics of phase change materials to achieve targeted performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ovshinsky SR (1968) Phys Rev Lett 21(20):1450

    Article  Google Scholar 

  2. Yamada N, Ohno E, Nishiuchi K, Akahira N, Takao M (1991) J Appl Phys 69(5):2849

    Article  CAS  Google Scholar 

  3. Bez R (2009) Int Electron Devices Meet. doi:10.1109/IEDM.2009.5424415

    Google Scholar 

  4. Gleixner B, Pirovano A, Sarkar J, Ottogalli F, Tortorelli E, Tosi M, Bez R (2007) Int Relat Phys. doi:10.1109/RELPHY.2007.369948

    Google Scholar 

  5. Raoux S, Muñoz B, Cheng H-Y, Jordan-Sweet JL (2009) Appl Phys Lett 95(14):143118

    Article  Google Scholar 

  6. Fantini A, Sousa V, Perniola L, Gourvest E, Bastien JC, Maitrejean S, Braga S, Pashkov N, Bastard A, Hyot B, Roule A, Persico A, Feldis H, Jahan C, Nodin JF, Blachier D, Toffoli A, Reimbold G, Fillot F, Pierre F, Annunziata R, Benshael D, Mazoyer P, Vallee C, Billon T, Hazart J, De Salvo B, Boulanger F (2010) Int Electron Devices Meet. doi:10.1109/IEDM.2010.5703441

  7. Perniola L, Sousa V, Fantini A, Arbaoui E, Bastard A, Armand M, Fargeix A, Jahan C, Nodin JF, Persico A, Blachier D, Toffoli A, Loubriat S, Gourvest E, Betti Beneventi G, Feldis H, Maitrejean S, Lhostis S, Roule A, Cueto O, Reimbold G, Poupinet L, Billon T, De Salvo B, Bensahel D, Mazoyer P, Annunziata R, Zuliani P, Boulanger F (2010) Electron Device Lett 31(5):488

    Google Scholar 

  8. Betti Beneventi G, Perniola L, Sousa V, Gourvest E, Maitrejean S, Bastien JC, Bastard A, Hyot B, Fargeix A, Jahan C, Nodin JF, Persico A, Fantini A, Blachier D, Toffoli A, Loubriat S, Roule A, Lhostis S, Feldis H, Reimbold G, Billon T, De Salvo B, Larcher L, Pavan P, Bensahel D, Mazoyer P, Annunziata R, Zuliani P, Boulanger F (2011) Solid State Electron 65–66(1):197

  9. Ramesh K, Asokan S, Sangunni KS, Gopal ESR (1998) Eur Phys J B 6:207

    Article  CAS  Google Scholar 

  10. Dohare C, Mehta N, Kumar A (2011) Mater Chem Phys 127:208

    Article  CAS  Google Scholar 

  11. Borisova ZU (1985) Glassy semiconductors. Plenum Press, New York, p 436

    Google Scholar 

  12. Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M (2008) Nat Mater 7:972

    Article  CAS  Google Scholar 

  13. Ferhat A, Ollitrault-Fichet R, Rivet J (1991) J Alloys Compd 177(2):337

    Article  CAS  Google Scholar 

  14. Blachnik R, Gather B (1978) J Less Common Met 60:25

    Article  CAS  Google Scholar 

  15. Song KH, Kim SW, Seo JH, Lee HY (2009) Thin Solid Films 517(14):3958

    Article  CAS  Google Scholar 

  16. Kamada T, Sutou Y, Sumiya M, Saito Y, Koike J (2012) Thin Solid Films 520(12):4389

    Article  CAS  Google Scholar 

  17. Kim HK, Kim NH, Choi DJ (2012) J Mater Sci 47:6679. doi:10.1007/s10853-012-6606-9

    Article  CAS  Google Scholar 

  18. Song KH, Kim SW, Seo JH, Lee HY (2008) J Appl Phys 104:103516

    Article  Google Scholar 

  19. Raoux S, Salinga M, Jordan-Sweet JL, Kellock A (2007) J Appl Phys 101:044909

    Article  Google Scholar 

  20. Ramesh K, Asokan S, Sangunni KS, Gopal ESR (1999) Appl Phys A 69:421

    Article  CAS  Google Scholar 

  21. Ramesh K, Asokan S, Sangunni KS, Gopal ESR (2000) J Phys Chem Solids 61:95

    Article  CAS  Google Scholar 

  22. Kitao M, Gotoh C, Yamada S (1995) J Mater Sci 30:3521. doi:10.1007/BF00349904

    Article  CAS  Google Scholar 

  23. Mansuripur M, Erwin JK, Bletscher W, Khulbe P, Sadeghi K, Xun X, Gupta A, Mendes SB (1999) Appl Opt 38(34):7095

    Article  CAS  Google Scholar 

  24. Weidenhof V, Friedrich I, Ziegler S, Wuttig M (2001) J Appl Phys 89:3168

    Article  CAS  Google Scholar 

  25. Jiri Malek (1995) Thermochim Acta 267:61

    Article  Google Scholar 

  26. Do K, Lee D, Sohn H, Cho MH, Ko DH (2010) J Electrochem Soc 157(3):H264

    Article  CAS  Google Scholar 

  27. Tauc J, Grigorovici R, Vancu A (1996) Phys Status Solidi B 15:627

    Article  Google Scholar 

  28. Wang C, Zhai J, Yao X (2010) Ferroelectrics 410:152

    Article  Google Scholar 

  29. Kim Y, Jeong K, Cho MH, Hwang U, Jeong HS, Kim K (2007) Appl Phys Lett 90:171920

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo Jin Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, J.H., Kim, H.K. & Choi, D.J. Threshold behavior of phase transition characteristics in germanium telluride glasses doped with Ag. J Mater Sci 48, 6167–6176 (2013). https://doi.org/10.1007/s10853-013-7413-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7413-7

Keywords

Navigation