Skip to main content
Log in

First-principles investigations of structural, elastic, electronic and magnetic properties of Ga1−x Mn x P and In1−x Mn x P

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We employ the full-potential linearized augmented plane wave plus local orbital (FP L/APW + lo) method based on the density functional theory (DFT) in order to investigate the structural, elastic, electronic, and magnetic properties of ordered dilute ferromagnetic semiconductors Ga1−x Mn x P and In1−x Mn x P at (x = 0.25) in the zinc blende phase, using generalized gradient approximation, GGA (PBE). To our knowledge the elastic constants of these compounds have not yet been measured or calculated, hence our results serve as a first quantitative theoretical prediction for future study. Results of calculated electronic structures and magnetic properties reveal that both Ga0.75Mn0.25P and In0.75Mn0.25P have stable ferromagnetic ground state, and they are ideal half-metallic (HM) ferromagnetic at their equilibrium lattice constants. Also we show the nature of the bonding from the charge spin-densities calculations. The calculated total magnetic moments are 4.0 μB per unit cell for both Ga0.75Mn0.25P and In0.75Mn0.25P, which agree with the Slater–Pauling rule quite well, and we observe that p–d hybridization reduces the local magnetic moment of Mn from its free space charge value and produces smaller local magnetic moments on the nonmagnetic Ga, In and P sites. The values of N 0α and N 0β exchange constants confirm the magnetic nature of these compounds. From the robust half-metallicity of Ga0.75Mn0.25P and In0.75Mn0.25P as a function of lattice constant is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Liu C, Yun F, Morkoç H (2005) J Mater Sci: Mater Electron 16:555

    Article  CAS  Google Scholar 

  2. Prinz GA (1999) J Magn Magn Mater 200:57

    Article  CAS  Google Scholar 

  3. Tarhan E, Miotkowski I, Rodriguez S, Ramdas AK (2003) Phys Rev B 67:195202

    Article  Google Scholar 

  4. Katayama-Yoshida H, Sato K (2003) Phys B 327:337

    Article  CAS  Google Scholar 

  5. Mahadevan P, Zunger A (2004) Appl Phys Lett 85:2860

    Article  CAS  Google Scholar 

  6. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova AV, Treger DM (2001) Science 294:1488

    Article  CAS  Google Scholar 

  7. Theodoropoulou N, Hebard AF, Overberg ME, Abernathy CR, Pearton SJ, Chu SNG, Wilson RG (2002) Phys Rev Lett 89:107203

    Article  CAS  Google Scholar 

  8. Overberg ME, Gila BP, Thaler GT, Abernathy CR, Pearton SJ, Theodoropoulou NA, McCarthy KT, Arnason SB, Hebard AF, Chu SNG, Wilson RG, Zavada JM, Park YD (2002) J Vac Sci Technol B 20:969

    Article  CAS  Google Scholar 

  9. Singh VA, Zunger A (1985) Phys Rev B 31:3729

    Article  CAS  Google Scholar 

  10. Burch KS, Awschalom DD, Basov DN (2008) J Magn Magn Mater 320:3207

    Article  CAS  Google Scholar 

  11. Ahmad I, Amin B (2013) Comput Mater Sci 68:55

    Article  CAS  Google Scholar 

  12. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Science 287:1019

    Article  CAS  Google Scholar 

  13. Owens FJ (2005) J Phys Chem Solids 66:793

    Article  CAS  Google Scholar 

  14. Korona KP, Wysmolek A, Kamińska M, Twardowski A, Piersa M, Palczewska M, Strzelecka G, Hruban A, Kuhl J, Adomavicius R, Krotkus A (2006) Phys B 382:220

    Article  CAS  Google Scholar 

  15. Schmidt TM, Venezuela P, Arantes JT, Fazzio A (2006) Phys Rev B 73:235330

    Article  Google Scholar 

  16. Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    Article  Google Scholar 

  17. Kohn W, Sham LJ (1965) J Phys Rev A 140:1133

    Article  Google Scholar 

  18. Blaha P, Schwartz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2K, an augmented plane wave and local orbitals program for calculating crystal properties. TU Wien, Vienna

    Google Scholar 

  19. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  20. Murnaghan FD (1944) Proc Natl Acad Sci USA 30(9):244

    Article  CAS  Google Scholar 

  21. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  22. Pack JD, Monkhorst HJ (1977) Phys Rev B 16:1748

    Article  Google Scholar 

  23. Bouhemadou A, Khenata R, Kharoubi M, Seddik T, Reshak AH, Al-Douri Y (2009) Comput Mater Sci 45:474

    Article  CAS  Google Scholar 

  24. Heyd J, Peralta JE, Scuseria GE, Martin RL (2005) J Chem Phys 123:174101

    Article  Google Scholar 

  25. Wang SQ, Ye HQ (2002) Phys Rev B 66:235111

    Article  Google Scholar 

  26. Schreiber E, Anderson OL, Soga N (1973) Elastic constants and their measurement. McGraw-Hill, New York

    Google Scholar 

  27. Kanoun MB, Merad AE, Cibert J, Aourag H, Merad G (2004) J Alloys Compd 86:366

    Google Scholar 

  28. Merad AE, Aourag H, Khalifa B, Mathieu C, Merad G (2001) Superlattices Microstruct 30:241

    Article  CAS  Google Scholar 

  29. Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) J Appl Phys 89:5815

    Article  CAS  Google Scholar 

  30. Herrera-Cabrera MJ, Rodríguez-Hernández P, Munoz A (2001) Phys Status Solidi (b) 223:411

    Article  CAS  Google Scholar 

  31. Yogurtçu YK, Miller AJ, Saunders GA (1981) J Phys Chem Solids 42:49

    Article  Google Scholar 

  32. Nichols DN, Rimai DS, Sladek RJ (1980) Solid State Commun 36:667

    Article  CAS  Google Scholar 

  33. Morozzi VL, Janak JF, Williams AR (1978) Calculated electronic properties of metals. Pergamon, New York

    Google Scholar 

  34. Sanvito S, Ordejon P, Hill NA (2001) Phys Rev B 63:165206

    Article  Google Scholar 

  35. Wu Z, Cohen RE (2006) Phys Rev B 73:235116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Djedid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djedid, A., Doumi, B., Méçabih, S. et al. First-principles investigations of structural, elastic, electronic and magnetic properties of Ga1−x Mn x P and In1−x Mn x P. J Mater Sci 48, 6074–6082 (2013). https://doi.org/10.1007/s10853-013-7405-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7405-7

Keywords

Navigation