Skip to main content
Log in

Improving the interfacial adhesion in a new renewable resource-based biocomposites from biofuel coproduct and biodegradable plastic

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Biocomposites of a biopolymer and the coproduct of corn bioethanol industry, dried distillers’ grains with solubles (DDGS), were produced by reactive melt extrusion and injection molding. The biopolymer matrix was a blend of polyhydroxy(butyrate-co-valrerate), PHBV, and poly(butylene adipate-co-terphthalate), PBAT. The effect of compatibilizer, polymeric methylene diphenyl diisocyanate (PMDI), and corn oil lubricant was studied. The change in melt processing force suggested the occurrence of chemical reactions during the processing. This hypothesis was further investigated by infrared spectroscopy by which the formation of urethane and urea bonds between DDGS and polymeric matrix was approved. Dynamic mechanical analysis confirmed the occurrence of crosslinks at PBAT–PHBV interface showing that the tan δ curves for PBAT and PHBV of the matrix shifted slightly towards each other. Moreover, the calculated parameter of interaction, A, from tan δ curves admitted the stronger bond at the DDGS–matrix interface as a result of addition of PMDI compatibilizer. Also, scanning electron microscopy images revealed improved interfacial adhesion at the DDGS–matrix interface as well as PBAT–PHBV interface within the matrix itself. The obtained crosslinked interfaces resulted in improvement in the strength, modulus, and elongation-at-break of biocomposites. Moreover, a synergism of PMDI and corn oil effects led to a dramatic improvement in impact strength of this biocomposite system so that the respective value for the prepared DDGS biocomposite increased from 75 to 212 J/m with addition of 1 % of PMDI and 3 % of corn oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Green ML, Espinal L, Traversa E, Amis EJ (2012) MRS Bull 37:297

    Article  Google Scholar 

  2. Gandini A (2011) Green Chem 13:1061

    Article  CAS  Google Scholar 

  3. Mohanty AK, Misra M, Drzal LT (2002) J Polym Environ 10:19

    Article  CAS  Google Scholar 

  4. Mehta G, Mohanty AK, Misra M, Drzal LT (2004) Green Chem 6:254

    Article  CAS  Google Scholar 

  5. Calò E, Maffezzoli A, Mele G, Martina F, Mazzetto SE, Tarzia A, Stifani C (2007) Green Chem 9:754

    Article  Google Scholar 

  6. Taniguchi I, Kagotani K, Kimura Y (2003) Green Chem 5:545

    Article  CAS  Google Scholar 

  7. Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276–277:1

    Article  Google Scholar 

  8. Corre Y-M, Bruzaud S, Audic J-L, Grohens Y (2012) Polym Test 31:226

    Article  CAS  Google Scholar 

  9. Han CC, Ismail J, Kammer H-W (2004) Polym Degrad Stab 85:947

    Article  CAS  Google Scholar 

  10. Gassner F, Owen AJ (1992) Polymer 33:2508

    Article  CAS  Google Scholar 

  11. Zhang LL, Goh SH, Lee SY, Hee GR (2000) Polymer 41:1429

    Article  CAS  Google Scholar 

  12. Avella M, Calandrelli L, Immirzi B, Malinconico M, Martuscelli E, Pascucci B, Sadocco P (1995) J Polym Environ 3:49

    Article  CAS  Google Scholar 

  13. Park E-S, Kim HK, Shim JH, Kim HS, Jang LW, Yoon J-S (2004) J Appl Polym Sci 92:3508

    Article  CAS  Google Scholar 

  14. Qiu Z, Ikehara T, Nishi T (2003) Polymer 44:7519

    Article  CAS  Google Scholar 

  15. Asrar J, Pierre JR (2005) US Patent 6,841,603 Bl

  16. Herrera R, Franco L, Rodríguez-Galán A, Puiggalí J (2002) J Polym Sci Part A: Polym Chem 40:4141

    Article  CAS  Google Scholar 

  17. Cai Y, Lv J, Feng J, Liu Y, Wang Z, Zhao M, Shi R (2012) Spectrosc Lett 45:280

    Article  CAS  Google Scholar 

  18. Javadi A, Kramschuster AJ, Pilla S, Lee J, Gong S, Turng L-S (2010) Polym Eng Sci 50:1440

    Article  CAS  Google Scholar 

  19. Gallo E, Schartel B, Acierno D, Russo P (2011) Eur Polym J 47:1390

    Article  CAS  Google Scholar 

  20. Javadi A, Srithep Y, Lee J, Pilla S, Clemons C, Gong S, Turng L-S (2010) Composites Part A: Appl Sci Manuf 41:982

    Article  Google Scholar 

  21. Nagarajan V, Misra M, Mohanty AK (2013) Ind Crops Prod 42:461

    Article  CAS  Google Scholar 

  22. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Prog Polym Sci 37:1552

    Article  CAS  Google Scholar 

  23. Rosentrater KA (2007) In: Eaglesham A, Hardy RWF (eds) Agricultural biofuels: technology, sustainability and profitability. Proceedings of the National Agricultural Biotechnology Council’s 19th Annual Conference, Brookings, South Dakota, USA, May 22–24, 2007, National Agricultural Biotechnology Council, Ithaca

  24. Höfer R, Bigorra J (2008) Green Chem Lett Rev 1:79

    Article  Google Scholar 

  25. Industry Resources: Co-products, Renewable Fuels Association. http://www.ethanolrfa.org/pages/industry-resources-coproducts. Accessed 15 Nov 2012

  26. Julson JL, Subbarao G, Stokke DD, Gieselman HH, Muthukumarappan K (2004) J Appl Polym Sci 93:2484

    Article  CAS  Google Scholar 

  27. Tisserat B, Reifschneider L, O’Kuru RH, Finkenstadt VL (2013) BioResources 8:59

    Google Scholar 

  28. Wu Q, Mohanty AK (2007) J Biobased Mater Bioenergy 1:257

    Article  Google Scholar 

  29. Tatara RA, Suraparaju S, Rosentrater KA (2007) J Polym Environ 15:89

    Article  CAS  Google Scholar 

  30. Tatara RA, Rosentrater KA, Suraparaju S (2009) Ind Crops Prod 29:9

    Article  CAS  Google Scholar 

  31. Cheesbrough V, Rosentrater KA, Visser J (2008) J Polym Environ 16:40

    Article  CAS  Google Scholar 

  32. Chevali VS, Nerenz BA, Ulven CA (2012) J Biobased Mater Bioenergy 6:42

    Article  CAS  Google Scholar 

  33. Li Y, Susan Sun X (2011) J Appl Polym Sci 121:589

    Article  CAS  Google Scholar 

  34. Zarrinbakhsh N, Misra M, Mohanty AK (2011) Macromol Mater Eng 296:1035

    Article  CAS  Google Scholar 

  35. Zarrinbakhsh N, Mohanty AK, Misra M (2013) Biomass Bioenergy (accepted). doi:10.1016/j.biombioe.2013.02.016

  36. Bayari S, Severcan F, Gursel I, Hasirci V, Alaeddinoglu G (1998) In: Haris PI, Chapman D (eds) New biomedical materials: basic and applied studies. IOS Press, Amsterdam

    Google Scholar 

  37. Guillén MD, Cabo N (1997) J Sci Food Agric 75:1

    Article  Google Scholar 

  38. Lligadas G, Ronda JC, Galià M, Cádiz V (2006) Biomacromolecules 7:2420

    Article  CAS  Google Scholar 

  39. Howe C, Vasanthan N, MacClamrock C, Sankar S, Shin ID, Simonsen IK, Tonelli AE (1994) Macromolecules 27:7433

    Article  CAS  Google Scholar 

  40. D’Almeida JRM, De Carvalho LH (1998) J Mater Sci 33:2215. doi:10.1023/A:1004348025804

    Article  Google Scholar 

  41. Ahmed S, Jones FR (1990) J Mater Sci 25:4933. doi:10.1007/BF00580110

    Article  CAS  Google Scholar 

  42. Chen F, Liu L, Cooke PH, Hicks KB, Zhang J (2008) Ind Eng Chem Res 47:8667

    Article  CAS  Google Scholar 

  43. Jiang L, Chen F, Qian J, Huang J, Wolcott M, Liu L, Zhang J (2010) Ind Eng Chem Res 49:572

    Article  CAS  Google Scholar 

  44. Zhang N, Wang Q, Ren J, Wang L (2009) J Mater Sci 44:250. doi:10.1007/s10853-008-3049-4

    Article  CAS  Google Scholar 

  45. Harada M, Ohya T, Iida K, Hayashi H, Hirano K, Fukuda H (2007) J Appl Polym Sci 106:1813

    Article  CAS  Google Scholar 

  46. Kubát J, Rigdahl M, Welander M (1990) J Appl Polym Sci 39:1527

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Ontario ministry of agriculture, food and rural affairs (OMAFRA), Ontario Canada, for the financial support of this work through highly qualified personnel (HQP) scholarship program, and alternative renewable fuels plus (ARF+) research program. Again, the financial support of NSERC NCE AUTO21 project is highly appreciated. We also express our gratitude to the collaboration of GreenField Ethanol Inc., Chatham, Canada, for supplying DDGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjusri Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarrinbakhsh, N., Mohanty, A.K. & Misra, M. Improving the interfacial adhesion in a new renewable resource-based biocomposites from biofuel coproduct and biodegradable plastic. J Mater Sci 48, 6025–6038 (2013). https://doi.org/10.1007/s10853-013-7399-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7399-1

Keywords

Navigation