Skip to main content
Log in

Bi2S3-modified TiO2 nanotube arrays: easy fabrication of heterostructure and effective enhancement of photoelectrochemical property

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel heterostructure of Bi2S3 nanoparticles (NPs) and TiO2 nanotube arrays (NAs) was fabricated by a conventional hydrothermal method. The morphological features and the X-ray diffractogram of the obtained Bi2S3/TiO2 NAs were characterized by field-emission scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. The photoelectrochemical property of Bi2S3/TiO2 NAs was also evaluated. The results demonstrated that photoelectrochemical solar cells based on Bi2S3/TiO2 NAs had a short-circuit current of 4.54 mA/cm2 and photoelectric conversion efficiency of 1.86 %. Surface photovoltage spectroscopy and field-induced surface photovoltage spectroscopy data indicated the existence of a strong interfacial electronic field between the two components Bi2S3 NPs and TiO2 NAs, which can enhance the separation of photogenerated charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklove V, Spiccia L, Deacon GB, Bignozzi CA, Grä1tzel M (2001). J Am Chem Soc 123(8):1613

    Google Scholar 

  2. Hashimoto K, Irie H, Fujishima A (2005) Jpn J Appl Phys 44(12):8269

    Article  CAS  Google Scholar 

  3. Kralchevska R, Milanova M, Tsvetkov M, Dimitrov D, Todorovsky D (2012) J Mater Sci 47(12):4936. doi:10.1007/s10853-012-6368-4

    Article  CAS  Google Scholar 

  4. Lin H-M, Keng C-H, Tung C-Y (1997) Nanostruct Mater 9(1–8):747

    Article  CAS  Google Scholar 

  5. Nozik AJ (1975) Nature 257:383

    Article  CAS  Google Scholar 

  6. Gong D, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16(12):3331

    Article  CAS  Google Scholar 

  7. Sun WT, Yu Y, Pan HY, Gao XF, Chen Q, Peng LM (2008) J Am Chem Soc 130(4):1124

    Article  CAS  Google Scholar 

  8. Weller H (1993) Adv Mater 5(2):88

    Article  CAS  Google Scholar 

  9. Huang L, Zhang S, Peng F, Wang H, Yu H, Yang J, Zhang S, Zhao H (2010) Scr Mater 63(2):159

    Article  CAS  Google Scholar 

  10. Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) J Am Chem Soc 130(12):4007

    Article  CAS  Google Scholar 

  11. Ratanatawanate C, Xiong C, Balkus KJ Jr (2008) ACS Nano 2(8):1682

    Article  CAS  Google Scholar 

  12. Vogel R, Hoyer P, Weller H (1994) J Phys Chem 98(12):3183

    Article  CAS  Google Scholar 

  13. Peter LM, Wijayantha KGU, Riley DJ, Waggett JP (2003) J Phys Chem B 107(33):8378

    Article  CAS  Google Scholar 

  14. Bessekhouad Y, Robert D, Weber JV (2004) J Photochem Photobiol A Chem 163(3):569

    Article  CAS  Google Scholar 

  15. Brahimi R, Bessekhouad Y, Bouguelia A, Trari M (2007) Catal Today 122(1–2):62

    Article  CAS  Google Scholar 

  16. Zhao Q, Wang D, Peng L, Lin Y, Yang M, Xie T (2007) Chem Phys Lett 434(1–3):96

    CAS  Google Scholar 

  17. Tagarielli VL, Fleck NA, Colella A, Matteazzi P (2011) J Mater Sci 46:385. doi:10.1007/s10853-010-4848-y

    Article  CAS  Google Scholar 

  18. Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Nano Lett 7(1):69

    Article  CAS  Google Scholar 

  19. Zhang Y, Xie T, Jiang T, Wei X, Pang S, Wang X, Wang D (2009) Nanotechnology 20(15):155707

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Natural Science Foundation of China (50872116, 51202202, 51271155); International Thermonuclear Experimental Reactor (ITER) Program: 2011GB112001; Fundamental Research Funds for the Central Universities (SWJTU12CX017, WJTU11ZT31, SWJTU11ZT16); National High-tech R&D Program of China (863 Program) (2007AA03Z203); Research Fund for the Doctoral Program of Higher Education of China (SRFDP200806130023); the PCSIRT of the Ministry of Education of China (IRT0751); Doctor Innovation Fund of Southwest Jiaotong University (2012); Program of International S&T Cooperation (S2013ZR0595); New Teachers’ Fund for Doctor Stations, Ministry of Education (20120184120024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Yang or Yong Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, FG., Yang, F., Jia, YF. et al. Bi2S3-modified TiO2 nanotube arrays: easy fabrication of heterostructure and effective enhancement of photoelectrochemical property. J Mater Sci 48, 6001–6007 (2013). https://doi.org/10.1007/s10853-013-7396-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7396-4

Keywords