Skip to main content
Log in

Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cubic garnet of nominal composition Li7La3Zr2O12 (LLZO) is of interest as a possible electrolyte in a Li–metal halide battery composed of molten Li and an insoluble metal halide as electrodes operating in the temperature range of ~300–350 °C. As a consequence, the chemical stability of LLZO with molten Li in this temperature range was investigated. After heating in molten Li, the LLZO surface had undergone chemical coloration. X-diffraction, X-ray photoemission spectroscopy, electron paramagnetic resonance, and heat-treatment experiments suggest that chemical coloration is a result of the formation of color centers, composed of an electron trapped at an oxygen vacancy. It was also observed that after immersion in molten Li that LLZO exhibited intergranular cracking. It is believed that cracking results from stresses generated from an increased Li+ content, gained during immersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Okamoto H (1995) J Phase Equilib 16:94

    Article  CAS  Google Scholar 

  2. Murugan R, Thangadurai V, Weppner W (2007) Angew Chem Int Ed 46:7778

    Article  CAS  Google Scholar 

  3. Kotoboki M, Kanamura K, Sato S, Yoshida T (2011) J Power Sources 196:7750

    Article  Google Scholar 

  4. Rangasamy E, Wolfenstine J, Sakamoto J (2012) Solid State Ionics 206:28

    Article  CAS  Google Scholar 

  5. Geiger CA, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T, Weppner W (2011) Inorg Chem 50:1089

    Article  CAS  Google Scholar 

  6. Ni JE, Case ED, Sakamoto J, Rangasamy E, Wolfenstine J (2012) J Mater Sci 47:7978

    Article  CAS  Google Scholar 

  7. Viswanathan L, Virkar AV (1982) J Mater Sci 17:753

    Article  CAS  Google Scholar 

  8. Reed D, Coffey G, Mast E, Canfield J, Mansurov J, Lu X, Spenkle V (2013) J Power Sources 227:94

    Article  CAS  Google Scholar 

  9. Weber N (1974) Energ Convers 14:1

    Article  CAS  Google Scholar 

  10. De Jonghe LC, Buechele A (1982) J Mater Sci 17:885

    Article  Google Scholar 

  11. De Jonghe LC, Buechele A, Armand M (1983) Solid State Ionics 9&10:165

    Google Scholar 

  12. Smaga JA, Battles J (1985) J Mat Sci Lett 4:553

    Article  CAS  Google Scholar 

  13. Ansell RO (1986) J Mater Sci 21:365

    Article  CAS  Google Scholar 

  14. Barsum M (1990) J Mater Sci 25:4393

    Article  Google Scholar 

  15. Scmid H, De Jonghe LC, Cameron C (1982) Solid State Ionics 6:57

    Article  Google Scholar 

  16. De Jonghe LC (1986) Ceram Bull 8:1158

    Google Scholar 

  17. Demott DS, Redfern BAW (1976) J Physique C 37:423

    Google Scholar 

  18. Kingery WD, Bowen HK, Uhlmann DR (1975) Introduction to ceramics. Wiley, New York

    Google Scholar 

  19. Barsum M (1997) Fundamentals of ceramics. The McGraw-Hill Company, New York

    Google Scholar 

  20. Mah T-I, Parthasarathy TA, Lee HD (2004) J Ceram Process Res 5:369

    Google Scholar 

  21. Mezeix L, Green DJ (2006) Int J Appl Ceram Tech 3:166

    Article  CAS  Google Scholar 

  22. Yde-Anderson S, Lundsgaard JS, Moller L, Engell J (1984) Solid State Ionics 14:73

    Article  Google Scholar 

  23. Gordon RS, Miller GR, McEntire BJ, Beck ED, Rasmussen JR (1981) Solid State Ionics 3(4):243

    Article  Google Scholar 

  24. Jackman SD, Cutler RA (2012) J Power Sources 218:65

    Article  CAS  Google Scholar 

  25. Lu X, Xia G, Lemmon JP, Yang Z (2010) J Power Sources 195:2431

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JW, JAL, JR would like to acknowledge support of the Army Research Laboratory. JS would like to acknowledge the support of the US Army Research Office (ARO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wolfenstine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfenstine, J., Allen, J.L., Read, J. et al. Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature. J Mater Sci 48, 5846–5851 (2013). https://doi.org/10.1007/s10853-013-7380-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7380-z

Keywords

Navigation