Advertisement

Journal of Materials Science

, Volume 48, Issue 14, pp 4813–4822 | Cite as

Natural and synthetic iron oxides for hydrogen storage and purification

  • J. Requies
  • M. B. Güemez
  • S. Perez Gil
  • V. L. Barrio
  • J. F. Cambra
  • U. Izquierdo
  • P. L. Arias
Article

Abstract

In this paper, the hydrogen storage capacity of some synthetic and natural iron oxides is presented. The results of the activity tests and characterization techniques of natural and synthetic iron oxides (N2 adsorption–desorption isotherms, temperature-programmed reduction, X-ray diffraction, and plasma atomic emission spectroscopy) suggest that the use of chromium on iron oxide systems improved their hydrogen storage capacity. This is related to the capacity of chromium to modify the iron oxide reduction profile when Cr was incorporated. A direct reduction from Fe3O4 to Fe was observed as the mechanism for H2 storage. In addition, natural oxides as commercial Superfine and Densinox-L oxides are proved to be suitable materials to store and purify H2 due to their high stability during different cycles of reduction and oxidation. The best results among the natural ones were Densinox-L and among the synthetic ones Fe–10Cr.

Keywords

Iron Oxide Inductively Couple Plasma Atomic Emission Spectroscopy Hydrogen Storage Metallic Iron Metal Hydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to acknowledge the financial support of the Universidad del País Vasco and Basque Regional Government for this work (Saiotek program) and to Tecnalia for its kind collaboration to carry out this work.

References

  1. 1.
    Otsuka K, Kaburagi T, Yamada C, Takenaka S (2003) J Power Sources 122:111CrossRefGoogle Scholar
  2. 2.
    Lebon A, Garcia-Fuente A, Vega A, Aguilera-Granja F (2012) J Phys Chem 116:126Google Scholar
  3. 3.
    Lebon A, Garcia-Fuente A, Vega A, Aguilera-Granja F (2011) Phys Rev B 83:125427CrossRefGoogle Scholar
  4. 4.
    Kobayashi H, Yamauchi M, Kitagawa H (2012) J Am Chem Soc 134:6893CrossRefGoogle Scholar
  5. 5.
    Kobayashi H, Yamauchi M, Kitagawa H (2011) J Am Chem Soc 133:11034CrossRefGoogle Scholar
  6. 6.
    Kusada K, Yamauchi M, Kobayashi H, Kubota Y (2010) J Am Chem Soc 132:15896CrossRefGoogle Scholar
  7. 7.
    Huang ZG, Guo ZP, Calka A, Wexler D, Lukey C, Liu HK (2006) J Alloy Compd 422:299CrossRefGoogle Scholar
  8. 8.
    Hacker V, Faleschini G, Fuchs H, Fankhauser R, Simader G, Ghaemi M (1998) J Power Sources 71:226CrossRefGoogle Scholar
  9. 9.
    Hacker V, Faleschini G, Fuchs H, Fankhauser R, Simader G, Ghaemi M (2000) J Power Sources 86:531CrossRefGoogle Scholar
  10. 10.
    Hacker V (2003) J Power Sources 118:311CrossRefGoogle Scholar
  11. 11.
    Mignard D, Pritchard C (2007) Int J Hydrogen Energy 32:5039CrossRefGoogle Scholar
  12. 12.
    David E (2005) J Mater Process Technol 169:162–163Google Scholar
  13. 13.
    Kock AJHM, Fortuin HM, Geus JW (1985) J Catal 96:261CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603CrossRefGoogle Scholar
  16. 16.
    Lowell S, Shields JE, Thomas MA, Thommes M (2006) Characterization of porous solids and powers: surface area, pore size and density. Springer, NetherlandsGoogle Scholar
  17. 17.
    De Boer JH (1958) The structure and properties of porous materials. Butterworths, LondonGoogle Scholar
  18. 18.
    Jozwiak WK, Kaczmarek E, Maniecki TP, Ignaczak W, Maniukiewicz W (2007) Appl Catal A 326:17CrossRefGoogle Scholar
  19. 19.
    Liu X, Shen K, Wang Y, Wang Y, Guo Y, Guo Y et al (2008) Catal Commun 9:2316CrossRefGoogle Scholar
  20. 20.
    Jimenez-Lopez A, Rodriguez-Castellon E, Maireles-Torres P, Díaz L, Mérida-Robles J (2001) Appl Catal A Gen 218:295CrossRefGoogle Scholar
  21. 21.
    Batista MS, Assaf EM, Assaf JM, Ticianelli EA (2006) Int J Hydrogen Energy 31:1204CrossRefGoogle Scholar
  22. 22.
    Popa T, Guoqing X, Barton TF, Argylea MD (2010) Appl Catal A 379:15CrossRefGoogle Scholar
  23. 23.
    Lorente E, Peña JA, Herguido J (2011) Int J Hydrogen Energy 36:7043CrossRefGoogle Scholar
  24. 24.
    Lorente E, Peña JA, Herguido J (2009) J Power Sources 192:224CrossRefGoogle Scholar
  25. 25.
    Sharma T (1994) ISIJ Int 34(12):960CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. Requies
    • 1
  • M. B. Güemez
    • 1
  • S. Perez Gil
    • 2
  • V. L. Barrio
    • 1
  • J. F. Cambra
    • 1
  • U. Izquierdo
    • 1
  • P. L. Arias
    • 1
  1. 1.School of Engineering (UPV/EHU)BilbaoSpain
  2. 2.Tecnalía, Parque Tecnologico 20009Donostia-San SebastianSpain

Personalised recommendations