Skip to main content
Log in

Thermodynamic investigations of copper oxides used as conversion type electrodes in lithium ion batteries

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Copper oxides, which exhibit the conversion mechanism with lithium during electrochemical cycling, are promising electrode materials for next-generation lithium ion batteries. To better understand phase formations and equilibria in the Li–Cu–O system, the LiCu2O2 phase was synthesized using the solid-state method and characterized with X-ray powder diffraction technique and Rietveld analysis as well as inductively coupled plasma—optical emission spectrometry (ICP–OES). The phase stabilities in argon atmosphere and in a mixture of argon and oxygen were determined between 200 and 900 °C and between 200 and 950 °C, respectively. Based on this data as well as on other literature data, a thermodynamic description of the Li–Cu–O system valid in the battery relevant temperature regime was developed using the CALPHAD method. From this thermodynamic description, titration curves for CuO and Cu2O cathodes, which give the equilibrium cell voltage as a function of lithium content along a selected composition path, were calculated at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon J-M (2001) J Electrochem Soc 148:A285

    Article  CAS  Google Scholar 

  2. Chen C, Ding N, Wang L, Yu Y, Lieberwirth I (2009) J Power Source 189:552

    Article  CAS  Google Scholar 

  3. Cabana J, Monconduit L, Larcher D, Palacín MR (2010) Adv Mater 22:E170

    Article  CAS  Google Scholar 

  4. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J-M (2000) Nature 407:496

    Article  CAS  Google Scholar 

  5. Débart A, Dupont L, Poizot P, Leriche J-B, Tarascon J-M (2001) J Electrochem Soc 148:A1266

    Article  Google Scholar 

  6. Wang X, Tang DM, Li H, Yi W, Zhai T, Bando Y, Goldberg D (2012) Chem Commun 48:4812

    Article  CAS  Google Scholar 

  7. Yamakawa N, Jiang M, Grey CP (2009) Chem Mater 21:3162

    Article  CAS  Google Scholar 

  8. Lee YH, Leu IC, Liao CL, Chang ST, Wu MT, Yen JH, Fung KZ (2006) Electrochem Solid State Lett 9:A207

    Article  CAS  Google Scholar 

  9. Xiang JY, Tu JP, Huang XH, Yang YZ (2008) J Solid State Electrochem 12:941

    Article  CAS  Google Scholar 

  10. Gruner W, Thomas J, Giebeler L, Ehrenberg H, Wadewitz D (2011) J Electrochem Soc 158:A1383

    Article  CAS  Google Scholar 

  11. Xiang JY, Tu JP, Yuan YF, Huang XH, Zhou Y, Zhang L (2009) Electrochem Commun 11:262

    Article  CAS  Google Scholar 

  12. Xiang JY, Tu JP, Yuan YF, Wang XL, Huang XH, Zeng ZY (2009) Electrochim Acta 54:1160

    Article  CAS  Google Scholar 

  13. Yang M, Gao M (2011) Microporous Mesoporous Mater 143:230

    Article  CAS  Google Scholar 

  14. Huggins RA (ed) (2009) Advanced batteries: materials science aspects. Springer, New York

    Google Scholar 

  15. Hoppe R, Rieck H (1970) Z Anorg Allg Chem 379:157

    Article  CAS  Google Scholar 

  16. Abdullaev GK, Rza Zade PF, Mamedov KS (1982) Russ J Inorg Chem 27:1037

    Google Scholar 

  17. Hibble SJ, Koehler J, Simon A, Paider S (1990) J Solid State Chem 88:534

    Article  CAS  Google Scholar 

  18. Fleischer NA, Lyubomirksy I, Scolnik Y, Manassen J (1993) Solid State Ion 59:59

    Article  CAS  Google Scholar 

  19. Losert W, Hoppe R (1985) Z Anorg Allg Chem 524:7

    Article  CAS  Google Scholar 

  20. Fischer D, Carl W, Glaum H, Hoppe R (1990) Z Allg Anorg Chem 585:75

    Article  CAS  Google Scholar 

  21. Hoffmann R, Hoppe R, Schaefer W (1989) Z Anorg Allg Chem 578:18

    Article  CAS  Google Scholar 

  22. Berger R, Meetsmam A, van Smallen S, Sundberg M (1991) J Less Common Met 175:119

    Article  CAS  Google Scholar 

  23. Bush AA, Kamentsev KE, Tishchenko EA (2004) Inorg Mater 40:44

    Article  CAS  Google Scholar 

  24. Ivanov SA, Bush AA, Kamentsev KE, Tishchenko EA, Ottosson M, Mathieu R, Nordblad P (2012). arXiv:1211.3275

  25. Berger R, Tergenius L-E (1994) J Alloy Compd 203:203

    Article  CAS  Google Scholar 

  26. Migeon HN, Courtois A, Zanne M, Gleitzer C, Aubry J (1976) Rev Chim Miner 12:203

    Google Scholar 

  27. Berger R, Oennerud P, Laligant Y, Le Bail A (1993) J Alloy Compd 190:295

    Article  CAS  Google Scholar 

  28. Arai H, Okada S, Sakurai Y, Yamaki JI (1998) Solid State Ion 106:45

    Article  CAS  Google Scholar 

  29. Godshall NA (1986) Solid State Ion 18(19):788

    Article  Google Scholar 

  30. Patat S, Blunt DP, Chippindale AM, Dickens PG (1991) Solid State Ion 46:325

    Article  CAS  Google Scholar 

  31. Chang K, Hallstedt B (2011) CALPHAD 35:160

    Article  CAS  Google Scholar 

  32. Berger R (1991) J Less Common Met 169:33

    Article  CAS  Google Scholar 

  33. Lin JH, Li K, Ruan SK, Zeng Su M (1996) Chin Chem Lett 7:4

    Google Scholar 

  34. Paszkowicz W, Marczak M, Vorotynov AM, Sablina KA, Petrakovskii GA (2001) Powder Diffr 16:30

    Article  CAS  Google Scholar 

  35. Hibble SJ, Malitesta C, Dickens PG (1990) Solid State Ion 39:6

    Article  Google Scholar 

  36. Rietveld HM (1967) Acta Crystallogr 22:151

    Article  CAS  Google Scholar 

  37. Rietveld HM (1969) J Appl Crystallogr 2:65

    Article  CAS  Google Scholar 

  38. Lutterotti L, Matthies S, Wenk HR (1999) 21: 14

  39. Gatta GD, Richardson MJ, Sarge SM, Stolen S (2006) Pure Appl Chem 78:1455

    Article  Google Scholar 

  40. Boettinger WJ, Kattner UR, Moon K-W, Perepezko JH (2006) NIST Spec. Publ. 960-15

  41. Rakhshani AE (1986) Solid State Electron 29:7

    Article  CAS  Google Scholar 

  42. Scarlat O, Zaharescu M (2002) J Therm Anal Calorim 68:851

    Article  CAS  Google Scholar 

  43. Boudène A, Hack K, Mohammad A, Neuschütz D, Zimmermann E (1992) Z Metallkd 83:663

    Google Scholar 

  44. O’Keefe M, Moore WJ (1962) J Chem Phys 36:3009

    Article  Google Scholar 

  45. Hallstedt B, Gauckler LJ (2003) CALPHAD 27:177

    Article  CAS  Google Scholar 

  46. Saunders N (1998) In: Ansara I, Dinsdale AT, Rand MH (eds) COST 507 Thermochemical database for light metal alloys, 2. Luxembourg, 168

  47. Gasior W, Onderka B, Moser Z, Debski A, Gancarz T (2009) CALPHAD 33:215

    Article  CAS  Google Scholar 

  48. Yazami R (2009) In: Ozawa K (ed) Lithium ion rechargeable batteries. WILEY-VCH Verlag GmbH & Co KGaQ, Weinheim

    Google Scholar 

Download references

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft (DFG) SPP 1473—WeNDeLIB is gratefully acknowledged. This work was partially carried out with support of the Karlsruhe Nano Micro Facility (KNMF, www.knmf.kit.edu), a Helmholtz research infrastructure at Karlsruhe Institute of Technology (KIT, www.kit.edu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren Lepple.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lepple, M., Adam, R., Cupid, D.M. et al. Thermodynamic investigations of copper oxides used as conversion type electrodes in lithium ion batteries. J Mater Sci 48, 5818–5826 (2013). https://doi.org/10.1007/s10853-013-7374-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7374-x

Keywords

Navigation