Skip to main content
Log in

Structural and magnetic properties of nanocomposites based on nanostructured polyaniline and titania nanotubes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocomposites consisting of self-assembled polyaniline (PANI) nanostructures and titania nanotubes (TiO2-NT) were synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in an aqueous dispersion of TiO2-NT (outer diameter ~10 nm), without added acid. The influence of initial mole ratio of aniline to TiO2 (80, 20, and 5) on the morphology, electrical conductivity, molecular structure, crystallinity, and magnetic properties of synthesized PANI/TiO2 nanocomposites was studied. Transmission electron microscopy, Raman spectroscopy, and X-ray powder diffraction proved that the shape and structure of TiO2-NT in the final nanocomposites were preserved. The shape of PANI nanostructures formed in the nanocomposites was influenced by the initial aniline/TiO2-NT mole ratio. Nanotubes and nanorods are predominant PANI nanostructures in the nanocomposite prepared with the highest aniline/TiO2 mol ratio of 80. The decrease of aniline/TiO2 molar ratio induced more pronounced formation of nanorod network. The electrical conductivity of PANI/TiO2 nanocomposites was in the range (1.3–2.4) × 10−3 S cm−1. The nanocomposites exhibit weak ferromagnetic behavior. Approximately order of magnitude lower values of coercive field and remanent magnetization were obtained for nanocomposite samples in comparison to pure PANI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wallace GG, Spinks GM, Kane-Maguire LAP, Teasdale PR (2003) Conductive electroactive polymers: intelligent materials systems. CRC Press, Boca Raton

    Google Scholar 

  2. Lee K, Cho S, Park SH, Heeger AJ, Lee CW, Lee SH (2006) Nature 44:65

    Article  Google Scholar 

  3. Li X, Wang D, Cheng G, Luo Q, An J, Wang Y (2008) App Catal B: Environ 81:267

    Article  CAS  Google Scholar 

  4. Su SJ, Kuramoto N (2000) Synth Met 114:147

    Article  CAS  Google Scholar 

  5. Zhang L, Wan M, Wei Y (2005) Synth Met 151:1

    Article  CAS  Google Scholar 

  6. Radoičić M, Šaponjić Z, Nedeljković J, Ćirić-Marjanović G, Stejskal J (2010) Synth Met 160:1325

    Article  Google Scholar 

  7. Somani PR, Marimuthu R, Mulik UP, Sainkar SR, Amalnerkar DP (1999) Synth Met 106:45

    Article  CAS  Google Scholar 

  8. Ma L, Li Y, Yu X, Zhu N, Yang Q, Noh CH (2008) J Solid State Chem 12:1503

    CAS  Google Scholar 

  9. Xia H, Wang Q (2002) Chem Mater 14:2158

    Article  CAS  Google Scholar 

  10. Ameen S, Akhtar MS, Kim GS, Kim YS, Yang OB, Shin HS (2009) J Alloy Compd 487:382

    Article  CAS  Google Scholar 

  11. Zhang H, Zong R, Zhao J, Zhu Y (2008) Environ Sci Technol 42:3803

    Article  CAS  Google Scholar 

  12. Roy AS (2011) J Appl Polym Sci 121:675

    Article  CAS  Google Scholar 

  13. Gong J, Li YH, Hu ZS, Zhou ZZ, Deng YL (2010) J Phys Chem C 114:9970

    Article  CAS  Google Scholar 

  14. Sathiyanarayanan S, Syed Azim S, Venkatachari G (2007) Synth Met 157:205

    Article  CAS  Google Scholar 

  15. Radhakrishnan S, Siju CR, Mahanta D, Patil S, Madras G (2009) Electrochim Acta 54:1249

    Article  CAS  Google Scholar 

  16. Karim MR, Lee HW, Cheong IW, Park SN, Oh W, Yeum JH (2010) Polym Comp 31:83

    CAS  Google Scholar 

  17. Xiong SX, Wang Q, Xia HS (2004) Synth Met 146:37

    Article  CAS  Google Scholar 

  18. Sui XM, Chu Y, Xing SX (2004) Mater Lett 58:1255

    Article  CAS  Google Scholar 

  19. Yavuz AG, Gok A (2007) Synth Met 157:235

    Article  CAS  Google Scholar 

  20. Karim MR, Yeum JH, Lee MS, Lim KT (2008) React Funct Polym 68:1371

    Article  CAS  Google Scholar 

  21. Schnitzler DC, Zarbin AJG (2004) J Braz Chem Soc 15:378

    Article  CAS  Google Scholar 

  22. Zhang L, Wan M (2003) J Phys Chem B 107:6748

    Article  CAS  Google Scholar 

  23. Kim BS, Lee KT, Huh PH, Lee DH, Jo NJ, Lee JO (2009) Synth Met 159:1369

    Article  CAS  Google Scholar 

  24. Xiong S, Phua SL, Dunn BS, Ma J, Lu X (2010) Chem Mater 22:255

    Article  CAS  Google Scholar 

  25. Long Y, Chen Z, Shen J, Zhang Z, Zhang L, Xiao H, Wan M, Duvail JL (2006) J Phys Chem B 110:23228

    Article  CAS  Google Scholar 

  26. Raghunathan A, Natarajan TS, Rangarajan G, Dhawan SK, Trivedi DC (1993) Phys Rev B 47:13189

    Article  CAS  Google Scholar 

  27. Ginder JM, Richter AF, Mac Diarmid AG, Epstein AJ (1987) Solid State Commun 63:97

    Article  CAS  Google Scholar 

  28. Trivedi DC (2001) Synth Met 121:1780

    Article  CAS  Google Scholar 

  29. Yoshizawa K, Tanaka K, Yamabe T, Yamauchi J (1992) J Chem Phys 96:5516

    Article  CAS  Google Scholar 

  30. Ito A, Ota K, Tanaka K, Yamabe T, Yoshizawa K (1995) Macromolecules 28:5618

    Article  CAS  Google Scholar 

  31. Zaidi NA, Giblin SR, Terry I, Monkman AP (2004) Polymer 45:5683

    Article  CAS  Google Scholar 

  32. Nagaraja M, Pattar J, Shashank N, Manjanna J, Kamada Y, Rajanna K, Mahesh HM (2009) Synth Met 159:718

    Article  CAS  Google Scholar 

  33. Bushby RJ, McGill DR, Ng KM, Taylor N (1997) J Mater Chem 7:2343

    Article  CAS  Google Scholar 

  34. Radoičić M, Šaponjić Z, Ćirić-Marjanović G, Konstantinović Z, Mitrić M, Nedeljković J (2012) Polym Compos 33:1482

    Article  Google Scholar 

  35. Cheng Q, Pavlinek V, He Y, Li C, Saha P (2009) Colloid Polym Sci 287:435

    Article  CAS  Google Scholar 

  36. Su L, Gan YX (2012) Compos B 43:170

    Article  CAS  Google Scholar 

  37. Gospodinova N, Mokreva P, Terlemezyan L (1993) Polymer 34:2438

    Article  CAS  Google Scholar 

  38. Trchová M, Konyushenko EN, Stejskal J, Sedenkova I, Holler P, Ćirić-Marjanović G (2006) J Phys Chem B 110:9461

    Article  Google Scholar 

  39. Ćirić-Marjanović G, Trchová M, Stejskal J (2006) Collect Czech Chem Commun 71:1407

    Article  Google Scholar 

  40. Ćirić-Marjanović G, Trchová M, Stejskal J (2008) Int J Quantum Chem 108:318

    Article  Google Scholar 

  41. Ćirić-Marjanović G, Konyushenko EN, Trchová M, Stejskal J (2008) Synth Met 158:200

    Article  Google Scholar 

  42. Ćirić-Marjanović G, Trchová M, Stejskal J (2008) J Raman Spectrosc 39:1375

    Article  Google Scholar 

  43. Ćirić-Marjanović G, Dragičević Lj, Milojević M, Mojović M, Mentus S, Dojčinović B, Marjanović B, Stejskal J (2009) J Phys Chem B 113:7116

    Article  Google Scholar 

  44. Gill MT, Chapman SE, DeArmitt CL, Baines FL, Dadswell CM, Stamper JG, Lawless GA, Billingham NC, Armes SP (1998) Synth Met 93:227

    Article  CAS  Google Scholar 

  45. Janošević A, Ćirić-Marjanović G, Marjanović B, Holler P, Trchová M, Stejskal J (2008) Nanotechnology 19:135606

    Article  Google Scholar 

  46. Stejskal J, Sapurina I, Trchová M, Konyushenko EN, Holler P (2006) Polymer 47:8253

    Article  CAS  Google Scholar 

  47. Kang ET, Neoh KG, Tan KL (1998) Prog Polym Sci 23:277

    Article  CAS  Google Scholar 

  48. Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts. Wiley, New York

    Google Scholar 

  49. Vien DL, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic, San Diego

    Google Scholar 

  50. Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Appl Phys Lett 82:281

    Article  CAS  Google Scholar 

  51. Qian L, Du ZL, Yang SY, Jin ZS (2005) J Mol Struct 749:103

    Article  CAS  Google Scholar 

  52. Djurado D, Nicolau YF, Rannou P, Luzny W, Samuelsen EJ, Terech P, Bée M, Sauvajol JL (1999) Synth Met 101:764

    Article  CAS  Google Scholar 

  53. Pouget JP, Józefowicz ME, Epstein AJ, Tang X, MacDiarmid AG (1991) Macromolecules 24:779

    Article  CAS  Google Scholar 

  54. Šaponjić ZV, Dimitrijević NM, Tiede DM, Goshe AJ, Zuo X, Chen LX, Barnard AS, Zapol P, Curtiss L, Rajh T (2005) Adv Mater 17:965

    Article  Google Scholar 

  55. Zhu HY, Lan Y, Gao XP, Gao SP, Ringer SP, Zheng ZF, Song DY, Zhao JC (2005) J Am Chem Soc 127:6730

    Article  CAS  Google Scholar 

  56. Laslau C, Ingham B, Zujovic ZD, Capkova P, Stejskal J, Trchová M, Travas-Sejdic J (2012) Synth Met 161:2739

    Article  Google Scholar 

  57. Zujovic ZD, Laslau C, Bowmaker GA, Kilmartin PA, Webber AL, Brown SP, Travas-Sejdic J (2010) Macromolecules 43:662

    Article  CAS  Google Scholar 

  58. Zhang L, Wan M (2003) Adv Funct Mater 13:815

    Article  CAS  Google Scholar 

  59. Bhadra S, Singha NK, Khastgir D (2007) J Appl Polym Sci 104:1900

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (contract Grant numbers: 172056, 172043, 45020, 172019). Contract Grant sponsor: Spanish MEC through the RyC Program (to Z.K.). The authors are grateful to Prof. Phil Ahrenkiel from South Dakota School of Mines & Technology, USA, for the TEM measurements of titania nanotubes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. V. Šaponjić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radoičić, M., Ćirić-Marjanović, G., Šaponjić, Z.V. et al. Structural and magnetic properties of nanocomposites based on nanostructured polyaniline and titania nanotubes. J Mater Sci 48, 5776–5787 (2013). https://doi.org/10.1007/s10853-013-7370-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7370-1

Keywords

Navigation