Journal of Materials Science

, Volume 48, Issue 15, pp 5113–5124 | Cite as

Biocompatibility evaluation of protein-incorporated electrospun polyurethane-based scaffolds with smooth muscle cells for vascular tissue engineering

Article

Abstract

Nanotechnology has enabled the engineering of a variety of materials to meet the current challenges and needs in vascular tissue regeneration. In this study, four different kinds of native proteins namely collagen, gelatin, fibrinogen, and bovine serum albumin were incorporated with polyurethane (PU) and electropsun to obtain composite PU/protein nanofibers. SEM studies showed that the fiber diameters of PU/protein scaffolds ranged from 245 to 273 nm, mimicking the nanoscale dimensions of native ECM. Human aortic smooth muscle cells (SMCs) were cultured on the electrospun nanofibers, and the ability of the cells to proliferate on different scaffolds was evaluated via a cell proliferation assay. Cell proliferation on PU/Coll nanofibers was found the highest compared to other electrospun scaffolds and it was 42 % higher than the proliferation on PU/Fib nanofibers after 12 days of cell culture. The cell–biomaterial interaction studies by SEM confirmed that SMCs adhered to PU/Coll and PU/Gel nanofibers, with high cell substrate coverage, and both the scaffolds promoted cell alignment. The functionality of the cells was further demonstrated by immunocytochemical analysis, where the SMCs on PU/Coll and PU/Gel nanofibers expressed higher density of SMC proteins such as alpha smooth muscle actin and smooth muscle myosin heavy chain. Cells expressed biological markers of SMCs including aligned spindle-like morphology on both PU/Coll and PU/Gel with actin filament organizations, better than PU/Fib and PU/BSA scaffolds. Our studies demonstrate the potential of randomly oriented elastomeric composite scaffolds for engineering of vascular tissues causing cell alignment.

References

  1. 1.
    Fong IW (2000) Can Med Assoc J 163:49Google Scholar
  2. 2.
    Chan-Park M, Shen JY, Cao Y, Xiong Y, Liu YX, Rayatpisheh S, Kang GC, Greisler HP (2009) J Biomed Mater Res A 88:1104Google Scholar
  3. 3.
    Zhu YB, Cao Y, Pan J, Liu YX (2010) J Biomed Mater Res B 92:508Google Scholar
  4. 4.
    Owens GK, Kumar MS, Wamhoff B (2004) Physiol Rev 84:767CrossRefGoogle Scholar
  5. 5.
    Zucchelli A, Fabiani D, Gualandi C, Focarete ML (2009) J Mater Sci 44:4969. doi:10.1007/s10853-009-3759-2 CrossRefGoogle Scholar
  6. 6.
    Doan VH, Hsiao SW, Ho MH, Li CH, Shih JL (2013) J Mater Sci 48:1640. doi:10.1007/s10853-012-6921-1 CrossRefGoogle Scholar
  7. 7.
    Ma K, Chan CK, Liao S, Hwang WYK, Feng Q, Ramakrishna S (2008) Biomaterials 29:2096CrossRefGoogle Scholar
  8. 8.
    Goh YF, Shnkir I, Hussain R (2013) J Mater Sci 48:3027. doi:10.1007/s10853-013-7145-8 CrossRefGoogle Scholar
  9. 9.
    Pedicini A, Farris RJ (2003) Polymer 44:6857CrossRefGoogle Scholar
  10. 10.
    Chen R, Huang C, Ke QF, He CL, Wang HS, Mo XM (2010) Colloid Surf Part B 79:315CrossRefGoogle Scholar
  11. 11.
    Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Adv Drug Deliv Rev 59:1413CrossRefGoogle Scholar
  12. 12.
    Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, Feijen J (2006) Biomaterials 2:724CrossRefGoogle Scholar
  13. 13.
    Kolacna L, Bakesova J, Varga F, Kostakova E, Planka L, Necas A, Lukas D, Amler E, Pelouch V (2007) Physiol Res 56:S51Google Scholar
  14. 14.
    He W, Ma ZW, Yong T, Teo WE, Ramakrishna S (2005) Biomaterials 26:7606CrossRefGoogle Scholar
  15. 15.
    Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP, Rofail F, Smith H, Wu BM, Shemin R, Beygui RE, MacLellan WR (2008) Biomaterials 29:2907CrossRefGoogle Scholar
  16. 16.
    Zhang S, Huang Y, Yang X, Mei F, Ma Q, Chen G, Ryu S, Deng X (2009) J Biomed Mater Res A 90:671Google Scholar
  17. 17.
    Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM (2005) J Biomed Mater Res B 72:156CrossRefGoogle Scholar
  18. 18.
    Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT (2007) Acta Biomater 3:321CrossRefGoogle Scholar
  19. 19.
    Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2008) Biomaterials 29:4532CrossRefGoogle Scholar
  20. 20.
    Kim HW, Yu HS, Lee HH (2008) J Biomed Mater Res A 87:25Google Scholar
  21. 21.
    Powell HM, Boyce ST (2008) J Biomed Mater Res A 84:1078Google Scholar
  22. 22.
    Ma ZW, He W, Yong T, Ramakrishna S (2005) Tissue Eng 11:1149CrossRefGoogle Scholar
  23. 23.
    Mosesson MW (2005) J Throm Haemost 3:1894CrossRefGoogle Scholar
  24. 24.
    Mosesson MW, Siebenlist KR, Meh DA (2001) Ann NY Acad Sci 936:11CrossRefGoogle Scholar
  25. 25.
    Drew AF, Liu H, Davidson JM, Daugherty CC, Degen JL (2001) Blood 97:3691CrossRefGoogle Scholar
  26. 26.
    Rybarczyk BJ, Lawrence SO, Simpson-Haidaris PJ (2003) Blood 102:4035CrossRefGoogle Scholar
  27. 27.
    Sahni A, Francis CW (2000) Blood 96:3772Google Scholar
  28. 28.
    Eyrich D, Brandl F, Appel B, Wiese H, Maier G, Wenzel M, Staudenmaier R, Goepferich A, Blunk T (2007) Biomaterials 28:55CrossRefGoogle Scholar
  29. 29.
    Osathanon T, Linnes ML, Rajachar RM, Ratner BD, Somerman MJ, Giachelli CM (2008) Biomaterials 29:4091CrossRefGoogle Scholar
  30. 30.
    Kitajima T, Sakuragi M, Hasuda H, Ozu T, Ito Y (2009) Acta Biomater 5:2623CrossRefGoogle Scholar
  31. 31.
    Pankajakshan D, Philipose LP, Palakkal M, Krishnan K, Krishnan LK (2008) J Biomed Mater Res B 87:570Google Scholar
  32. 32.
    He CL, Xu XH, Zhang F, Cao LJ, Wei Feng, Wang HS, Mo XM (2011) J Biomed Mater Res A 97:339Google Scholar
  33. 33.
    Tian LL, Prabhakaran MP, Ding X, Kai D, Ramakrishna S (2012) J Mater Sci 47:3272. doi:10.1007/s10853-011-6166-4 CrossRefGoogle Scholar
  34. 34.
    Liu RJ, Shen XQ, Jiang CT, Song FZ, Li HX (2012) J Alloys Compd 511:163CrossRefGoogle Scholar
  35. 35.
    Liang HF, Wang Z (2010) Mater Chem Phys 124:964CrossRefGoogle Scholar
  36. 36.
    Parizek M, Kasalkova N, Bacakova Slepicka P, Lisa V, Blazkova M, Svorcik V (2009) Int J Mol Sci 10:4352CrossRefGoogle Scholar
  37. 37.
    Cheng M, Deng J, Yang F, Gong Y, Zhao N, Zhang X (2003) Biomaterials 24:2871CrossRefGoogle Scholar
  38. 38.
    Zhang KH, Wang HS, Huang C, Su Y, Mo XM, Ikada Y (2010) J Biomed Mater Res Part A 93:984Google Scholar
  39. 39.
    Lim TY, Poh CK, Wang W (2009) J Mater Sci Mater Med 20:1669. doi:10.1007/s10856-009-3727-z CrossRefGoogle Scholar
  40. 40.
    Bogush V, Sokolova O, Davydova L, Klinov D, Sidoruk K, Esipova N (2009) J Neuroimmune Pharmacol 4:17CrossRefGoogle Scholar
  41. 41.
    Li D, Frey MW, Joo YL (2006) J Memb Sci 286:104CrossRefGoogle Scholar
  42. 42.
    Eichhorn SJ, Sampson WW (2005) J R Soc Interface 2:309CrossRefGoogle Scholar
  43. 43.
    Jiang Z, Yuan KJ, Li SF, Chow WK (2006) Spectrosc Spec Anal 26:624Google Scholar
  44. 44.
    Salacinski HJ, Goldner S, Giudiceandrea A, Hamilton G, Seifalian AM, Edwards A, Carson RJ (2001) J Biomater Appl 15:241CrossRefGoogle Scholar
  45. 45.
    Mun C, Jung Y, Kim S, Lee SH, Kim HC, Kwon K, Kim SH (2012) Tissue Eng Part A 18:1608CrossRefGoogle Scholar
  46. 46.
    O’Connell MK, Murthy S, Phan S, Xu C, Buchanan J, Spilker R (2008) Matrix Biol 27:171CrossRefGoogle Scholar
  47. 47.
    McClendon MT, Stupp SI (2012) Biomaterials 33:5713CrossRefGoogle Scholar
  48. 48.
    Kai D, Prabhakaran MP, Jin GR, Ramakrishna S (2011) J Biomed Mater Res B 98:379Google Scholar
  49. 49.
    Zhu YB, Cao Y, Pan J, Liu YX (2010) J Biomed Mater Res B 92:508Google Scholar
  50. 50.
    Gupta D, Venugopal J, Prabhakaran MP, Giri Dev VR, Low S, Choon AT, Ramakrishna S (2009) Acta Biomater 5:2560CrossRefGoogle Scholar
  51. 51.
    Hungerford JE, Owens GK, Argraves WS, Little CD (1996) Dev Biol 178:375CrossRefGoogle Scholar
  52. 52.
    Nivison-Smith L, Weiss AS (2012) J Biomed Mater Res A 100:155Google Scholar
  53. 53.
    Blit PH, Battiston KG, Yang M, Santerre P, Woodhouse KA (2012) Acta Biomater 8:2493CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Key Laboratory of Textile Science & Technology, Ministry of Education, College of TextilesDonghua UniversityShanghaiChina
  2. 2.Faculty of Engineering, Center for Nanofibers and Nanotechnology, E3-05-14, Nanoscience and Nanotechnology Initiative, National University of SingaporeSingaporeSingapore
  3. 3.NUS Graduate School for Integrative Sciences and Engineering, National University of SingaporeSingaporeSingapore

Personalised recommendations