Coarsening behavior for M23C6 carbide in 12 %Cr-reduced activation ferrite/martensite steel: experimental study combined with DICTRA simulation

Abstract

Based on the multi-component aspects of thermodynamics and diffusion, coarsening behavior of M23C6 (M = Cr, Fe, W) carbide at 650 °C in 12 %Cr-reduced activation ferrite/martensite steel has been investigated experimentally using scanning transmission electron microscopy, combined with DICTRA simulation. Both the experimental measurements as well as the simulations indicate that the interfacial energy of M23C6 carbide in this steel at 650 °C is probably 0.5 J m−2, and the coarsening rate of M23C6 carbide is very low. The influence of a change in Mn, V, and Ta content and temperature on the coarsening rate of M23C6 carbide is also investigated. The results show that the coarsening rate is increased by adding Mn and reduced by V and Ta addition, respectively, while an increase in the coarsening rate by an order of magnitude with increasing temperature per 50 °C between 600 and 750 °C. Precipitation of Laves (Fe2W) phase during aging has a negligible effect on the coarsening of M23C6.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Li XG, Yan QZ, Ma R, Wang HQ, Ge CC (2010) J Iron Steel Res 17:57

    Article  Google Scholar 

  2. 2.

    Klueh R, Nelson A (2007) J Nucl Mater 371:37

    Article  CAS  Google Scholar 

  3. 3.

    Abe F, Horiuchi T, Taneike M, Sawada K (2004) Mater Sci Eng A 378:299

    Article  Google Scholar 

  4. 4.

    Murty K, Charit I (2008) J Nucl Mater 383:189

    Article  CAS  Google Scholar 

  5. 5.

    Quadakkers WJ, Żurek J, Hänsel M (2009) JOM 61:44

    Article  CAS  Google Scholar 

  6. 6.

    Knezevic V, Sauthoff G, Vilk J, Inden G, Schneider A, Agamennone R, Blum W, Wang Y, Scholz A, Berger C, Ehlers J, Singheiser L (2002) ISIJ Int 42:1505

    Article  CAS  Google Scholar 

  7. 7.

    Knezevic V, Balun J, Sauthoff G, Inden G, Schneider A (2008) Mater Sci Eng A 477:334

    Article  Google Scholar 

  8. 8.

    Leonteva-Smirnova MV, Ioltukhovskiy AG, Arutiunova GA, Tselischev AV, Chernov VM (2002) J Nucl Mater 307–311:466

    Article  Google Scholar 

  9. 9.

    Li XG, Yan QZ, Ma R, Wang HQ, Ge CC (2009) The 4th international symposium on supercritical water cooled reactors, Heidelberg

  10. 10.

    Xiao X, Liu GQ, Hu BF, Zheng X, Wang LN, Chen SJ, Ullah A (2012) Comput Mater Sci 62:227

    Article  CAS  Google Scholar 

  11. 11.

    Dudovaa N, Plotnikovaa A, Molodovb D, Belyakova A, Kaibysheva R (2012) Mater Sci Eng A 534:632

    Article  Google Scholar 

  12. 12.

    Tan L, Hoelzer DT, Busby JT, Sokolov MA, Klueh RL (2012) J Nucl Mater 422:45

    Article  CAS  Google Scholar 

  13. 13.

    Onizawa T, Wakai T, Andob M, Aoto K (2008) Nucl Eng Des 238:408

    Article  CAS  Google Scholar 

  14. 14.

    Taneike M, Sawada K, Abe F (2004) Metall Mater Trans A 35:1255

    Article  Google Scholar 

  15. 15.

    Ghassemi-Armaki H, Chen RP, Maruyama K, Yoshizawa M, Igarashi M (2009) Mater Lett 63:2423

    Article  CAS  Google Scholar 

  16. 16.

    Kostka A, Tak KG, Hellmig RJ, Estrin Y, Eggeler G (2007) Acta Mater 55:539

    Article  CAS  Google Scholar 

  17. 17.

    Aghajani A, Somsen CH, Eggeler G (2009) Acta Mater 57:5093

    Article  CAS  Google Scholar 

  18. 18.

    Borgenstam A, Engstro A, Hoglund L, Agren J (2000) J Ph Equilib 21(3):269

    Article  CAS  Google Scholar 

  19. 19.

    Andersson JO, Helander T, Höglund L, Shi PF, Sundman B (2002) Calphad 26(2):273

    Article  CAS  Google Scholar 

  20. 20.

    Schneider A, Inden G (2005) Acta Mater 53:519

    Article  CAS  Google Scholar 

  21. 21.

    Prat O, Garcia J, Rojas D, Carrasco C, Inden G (2010) Acta Mater 58:6142

    Article  CAS  Google Scholar 

  22. 22.

    Prat O, Garcia J, Rojas D, Carrasco C, Kaysser-Pyzalla AR (2010) Mater Sci Eng A 527:5976

    Article  Google Scholar 

  23. 23.

    Ostwald W (1900) Z Phys Chem 34:495

    Google Scholar 

  24. 24.

    Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35

    Article  Google Scholar 

  25. 25.

    Wagner C (1961) Z Electrochem 65:581

    CAS  Google Scholar 

  26. 26.

    Hald J, Korcakova L (2003) ISIJ Int 43:420

    Article  CAS  Google Scholar 

  27. 27.

    Gustafson A, Hattestrand M (2002) Mater Sci Eng A 333:279

    Article  Google Scholar 

  28. 28.

    Danon A, Servant C (2003) J Nucl Mater 321:8

    Article  CAS  Google Scholar 

  29. 29.

    Hu XB, Zhang M, Wu XC, Li L (2006) J Mater Sci Technol 22(2):153

    Article  CAS  Google Scholar 

  30. 30.

    Ghosh S (2010) Mater Chem Phys 124:13

    Article  CAS  Google Scholar 

  31. 31.

    Eggeler G (1989) Acta Metall 37(12):3225

    Article  CAS  Google Scholar 

  32. 32.

    Tamura M, Shinozuka K, Masamura K, Ishizawa K, Sugimoto S (1998) J Nucl Mater 258–263:1158

    Article  Google Scholar 

  33. 33.

    Tamura M, Kusuyama H, Shinozuka K, Esaka H (2007) J Nucl Mater 367–370:137

    Article  Google Scholar 

  34. 34.

    Klueh RL, Alexander DJ, Sokolov MA (2002) J Nucl Mater 304:139

    Article  CAS  Google Scholar 

  35. 35.

    Ghosh S (2010) J Mater Sci 45:1823. doi:10.1007/s10853-009-4165-5

    Article  CAS  Google Scholar 

  36. 36.

    Xia ZX, Zhang C, Yang ZG (2011) Mater Sci Eng A 528:6764

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by The National Basic Research Program of China (Grant No. 2007CB209801), National Natural Science Funds of China (Grant No. 51071019), and National High Technology Research and Development Program of China (Grant No. 2013AA031601).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guoquan Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiao, X., Liu, G., Hu, B. et al. Coarsening behavior for M23C6 carbide in 12 %Cr-reduced activation ferrite/martensite steel: experimental study combined with DICTRA simulation. J Mater Sci 48, 5410–5419 (2013). https://doi.org/10.1007/s10853-013-7334-5

Download citation

Keywords

  • Carbide
  • Ferrite
  • Martensite
  • Interfacial Energy
  • Scan Transmission Electron Microscopy