Journal of Materials Science

, Volume 48, Issue 16, pp 5387–5409 | Cite as

Chemical shrinkage characterization techniques for thermoset resins and associated composites

  • Yasir Nawab
  • Salma Shahid
  • Nicolas Boyard
  • Frédéric Jacquemin


Control and optimization of curing process is very important for the production of high quality composite parts. Crosslinking of molecules of thermoset resin occurs in this phase, which involves exothermy of reaction, chemical shrinkage (Sh) and development of thermo-physical and thermo-mechanical properties. Exact knowledge of the evolution of all these parameters is required for the better understanding and improvement of the fabrication process. Sh is one such property of thermoset matrix, which is difficult to characterize due to its coupling with thermal expansion/contraction. A number of techniques have been used to determine volume Sh of thermoset matrix, which later on has been used to find tensor of Sh for the simulation of residual stresses and shape distortion of composite part, etc. Direct characterization of volume Sh of composites has also been made by some authors. Though not much, but some work has also been reported to determine the Sh of composite part in a specific direction. In this article, all the techniques used in the literature for the characterization of Sh of resin and composite are reported briefly with their respective advantages, disadvantage and important results.


  1. 1.
    Abou Msallem Y, Jacquemin F, Boyard N, Poitou A, Delaunay D, Chatel S (2010) Compos Part A 41(1):108. doi:10.1016/j.compositesa.2009.09.025 CrossRefGoogle Scholar
  2. 2.
    Shimbo M, Yamabe M, Miyano Y (1998) Viscoelastic analysis of residual stress in thermosetting resins introduced during curing process. In: Allison IM (ed) 11th International conference on experimental mechanics, Oxford, p 1325Google Scholar
  3. 3.
    Hodges J, Yates B, Darby MI, Wostenholm GH, Clemmet JF, Keates TF (1989) J Mater Sci 24(6):1984. doi:10.1007/bf02385410 CrossRefGoogle Scholar
  4. 4.
    Lingois P, Berglund L, Greco A, Maffezoli A (2003) J Mater Sci 38(6):1321. doi:10.1023/a:1022811315807 CrossRefGoogle Scholar
  5. 5.
    Bogetti TA, Gillespie JW (1992) J Compos Mater 26(5):626. doi:10.1177/002199839202600502 CrossRefGoogle Scholar
  6. 6.
    Harris B (1978) J Mater Sci 13(1):173. doi:10.1007/bf00739288 CrossRefGoogle Scholar
  7. 7.
    Kim KS, Hahn HT (1989) Compos Sci Technol 36(2):121. doi:10.1016/0266-3538(89)90083-3 CrossRefGoogle Scholar
  8. 8.
    White SR, Kim YK (1998) Mech Compos Mater Struct 5(2):153. doi:10.1080/10759419808945897 CrossRefGoogle Scholar
  9. 9.
    Hahn HT, Pagano NJ (1975) J Compos Mater 9(1):91. doi:10.1177/002199837500900110 CrossRefGoogle Scholar
  10. 10.
    Lee S, Schile R (1982) J Mater Sci 17(7):2095. doi:10.1007/bf00540428 CrossRefGoogle Scholar
  11. 11.
    Wisnom MR, Gigliotti M, Ersoy N, Campbell M, Potter KD (2006) Compos Part A 37(4):522CrossRefGoogle Scholar
  12. 12.
    Yoon KJ, Kim J-S (2001) J Compos Mater 35(3):253. doi:10.1177/002199801772662244 CrossRefGoogle Scholar
  13. 13.
    Dano M-L, Hyer MW (1998) Int J Solids Struct 35(17):2101. doi:10.1016/s0020-7683(97)00167-4 CrossRefGoogle Scholar
  14. 14.
    Nawab Y, Jaquemin F, Casari P, Boyard N, Sobotka V (2013) J Compos Mater 47(3):327. doi:10.1177/0021998312440130 CrossRefGoogle Scholar
  15. 15.
    Chekanov YA, Korotkov VN, Rozenberg BA, Dhzavadyan EA, Bogdanova LM (1995) Polymer 36(10):2013. doi:10.1016/0032-3861(95)91446-E CrossRefGoogle Scholar
  16. 16.
    Eom Y, Boogh L, Michaud V, Sunderland P, Månson JA (2004) Polym Eng Sci 41(3):492CrossRefGoogle Scholar
  17. 17.
    ASTM (2012) Standard test method for linear shrinkage of cured thermosettings casting resins during cure. ASTM D2566–79Google Scholar
  18. 18.
    Starkweather HW, Taylor GB (1930) J Am Chem Soc 52(12):4708. doi:10.1021/ja01375a011 CrossRefGoogle Scholar
  19. 19.
    Li C, Potter K, Wisnom MR, Stringer G (2004) Compos Sci Technol 64(1):55CrossRefGoogle Scholar
  20. 20.
    Zhang J, Xu YC, Huang P (2009) Express Polym Lett 3(9):534CrossRefGoogle Scholar
  21. 21.
    Madhukar MS, Genidy MS, Russell JD (2000) J Compos Mater 34(22):1882. doi:10.1106/hucy-dy2b-2n42-ujbx CrossRefGoogle Scholar
  22. 22.
    Boyard N, Millischer A, Sobotka V, Bailleul JL, Delaunay D (2007) Compos Sci Technol 67(6):943. doi:10.1016/j.compscitech.2006.07.004 CrossRefGoogle Scholar
  23. 23.
    Li W, Lee LJ (1998) Polymer 39(23):5677. doi:10.1016/S0032-3861(98)00074-3 CrossRefGoogle Scholar
  24. 24.
    Nawab Y, Tardif X, Boyard N, Sobotka V, Casari P, Jacquemin F (2012) Compos Sci Technol 73:81. doi:10.1016/j.compscitech.2012.09.018 CrossRefGoogle Scholar
  25. 25.
    Pingsheng H, Zhiqiang Z, Caiyuan P, Renjie W (1989) J Mater Sci 24(5):1528. doi:10.1007/BF01105666 CrossRefGoogle Scholar
  26. 26.
    Yates B, McCalla BA (1979) J Mater Sci 14:1207. doi:10.1007/BF00561306 CrossRefGoogle Scholar
  27. 27.
    Snow AW, Armistead JP (1991) Dilatometry on thermoset resins. Naval Research Laboratory, Washington, DCGoogle Scholar
  28. 28.
    Huang Y-J, Liang C-M (1996) Polymer 37(3):401. doi:10.1016/0032-3861(96)82909-0 CrossRefGoogle Scholar
  29. 29.
    Parlevliet PP, Bersee HEN, Beukers A (2010) Polym Test 29(4):433CrossRefGoogle Scholar
  30. 30.
    Khoun L, Hubert P (2010) Polym Compos 31(9):1603. doi:10.1002/pc.20949 CrossRefGoogle Scholar
  31. 31.
    Russell JD, Madhukar MS, Genidy MS, Lee AY (2000) J Compos Mater 34(22):1926. doi:10.1106/uy9u-f2qw-2fkk-91kg CrossRefGoogle Scholar
  32. 32.
    Zoller P, Bolli P, Pahud V, Ackermann H (1976) RevSciInstrum 47(8):948Google Scholar
  33. 33.
    Li W, Lee LJ (2000) Polymer 41(2):685CrossRefGoogle Scholar
  34. 34.
    Ramos JA, Pagani N, Riccardi CC, Borrajo J, Goyanes SN, Mondragon I (2005) Polymer 46(10):3323CrossRefGoogle Scholar
  35. 35.
    Kinkelaar M, Muzumdar S, Lee LJ (1995) Polym Eng Sci 35(10):823CrossRefGoogle Scholar
  36. 36.
    Hwang SJ, Chang YS (2005) J Polym Sci Part B 43(17):2392. doi:10.1002/polb.20540 CrossRefGoogle Scholar
  37. 37.
    Kinkelaar M, Lee LJ (1992) J Appl Polym Sci 45(1):37CrossRefGoogle Scholar
  38. 38.
    Kinkelaar M, Wang B, Lee LJ (1994) Polymer 35(14):3011CrossRefGoogle Scholar
  39. 39.
    Saraswat MK, Jansen KMB, Ernst LJ (2006) CORD Conf Proc 2:782. doi:10.1109/estc.2006.280100 Google Scholar
  40. 40.
    Nawab Y, Boyard N, Sobotka V, Casari P, Jacquemin F (2011) Adv Mater Res 326:19CrossRefGoogle Scholar
  41. 41.
    Millischer A (2000) Transferts thermiques dans le procede d’injection BMC (Bulk Molding Compound). Université de Nantes, NantesGoogle Scholar
  42. 42.
    Boyard N, Vayer M, Sinturel C, Erre R, Delaunay D (2004) J Appl Polym Sci 92(5):2976. doi:10.1002/app.20312 CrossRefGoogle Scholar
  43. 43.
    Massé H, Arquis É, Delaunay D, Quilliet S, Le Bot PH (2004) Int J Heat Mass Transf 47(8–9):2015CrossRefGoogle Scholar
  44. 44.
    Nawab Y, Casari P, Boyard N, Jacquemin F (2013) J Mater Sci 48(6):2394. doi:10.1007/s10853-012-7026-6 CrossRefGoogle Scholar
  45. 45.
    Aduriz X, Lupi C, Boyard N, Bailleul JL, Leduc D, Sobotka V, Lefèvre N, Chapeleau X, Boisrobert C, Delaunay D (2007) Compos Sci Technol 67(15):3196CrossRefGoogle Scholar
  46. 46.
    Bucknall CB, Partridge IK, Phillips MJ (1991) Polymer 32(4):636. doi:10.1016/0032-3861(91)90475-X CrossRefGoogle Scholar
  47. 47.
    Ochi M, Yamashita K, Shimbo M (1991) J Appl Polym Sci 43(11):2013. doi:10.1002/app.1991.070431108 CrossRefGoogle Scholar
  48. 48.
    Magniez K, Vijayan A, Finn N (2012) Polym Eng Sci 52(2):346. doi:10.1002/pen.22088 CrossRefGoogle Scholar
  49. 49.
    Stone MA, Fink BK, Bogetti TA, Gillespie JW (2000) Polym Eng Sci 40(12):2489CrossRefGoogle Scholar
  50. 50.
    Flores F, Gillespie JW, Bogetti TA (2002) Polym Eng Sci 42(3):582CrossRefGoogle Scholar
  51. 51.
    Lange J, Toll S, Månson J-AE, Hult A (1995) Polymer 36(16):3135CrossRefGoogle Scholar
  52. 52.
    Schoch KF, Panackal PA, Frank PP (2004) Thermochim Acta 417(1):115CrossRefGoogle Scholar
  53. 53.
    Ruiz E, Trochu F (2005) J Compos Mater 39(10):881CrossRefGoogle Scholar
  54. 54.
    Tai HJ, Chou HL (2000) Eur Polym J 36:2213CrossRefGoogle Scholar
  55. 55.
    Brauner C, Block TB, Purol H, Herrmann AS (2012) J Compos Mater 46(17):2123CrossRefGoogle Scholar
  56. 56.
    Hong Y, Subodh GM, Ee Hua W (2005) Macromol Rapid Commun 26(18):1483CrossRefGoogle Scholar
  57. 57.
    Zarrelli M, Partridge IK, D’Amore A (2006) Compos Part A 37(4):565CrossRefGoogle Scholar
  58. 58.
    Zarrelli M, Skordos AA, Partridge IK (2002) Plast Rubber Compos 31:377CrossRefGoogle Scholar
  59. 59.
    Yu H, Mhaisalkar SG, Wong EH (2005) J Electron Mater 34(8):1177. doi:10.1007/s11664-005-0248-5 CrossRefGoogle Scholar
  60. 60.
    Haider M, Hubert P, Lessard L (2007) Compos Part A 38(3):994CrossRefGoogle Scholar
  61. 61.
    Shah DU, Schubel PJ (2010) Polym Test 29(6):629CrossRefGoogle Scholar
  62. 62.
    Khoun L, Centea T, Hubert P (2010) J Compos Mater 44(11):1397. doi:10.1177/0021998309353960 CrossRefGoogle Scholar
  63. 63.
    Cook WD, Forrest M, Goodwin AA (1999) Dent Mater 15(6):447CrossRefGoogle Scholar
  64. 64.
    Shimbo M, Ochi M, Shigeta Y (1981) J Appl Polym Sci 26(7):2265. doi:10.1002/app.1981.070260714 CrossRefGoogle Scholar
  65. 65.
    Hoa SV, Ouellette P, Ngo TD (2009) J Compos Mater 43(7):783. doi:10.1177/0021998308102035 CrossRefGoogle Scholar
  66. 66.
    Parlevliet PP, Bersee HEN, Beukers A (2010) Polym Test 29(3):291CrossRefGoogle Scholar
  67. 67.
    Antonucci V, Giordano M, Cusano A, Nasser J, Nicolais L (2006) Compos Sci Technol 66(16):3273. doi:10.1016/j.compscitech.2005.07.009 CrossRefGoogle Scholar
  68. 68.
    Karalekas D, Cugnoni J, Botsis J (2008) Compos Part A 39(7):1118. doi:10.1016/j.compositesa.2008.04.010 CrossRefGoogle Scholar
  69. 69.
    Giordano M, Laudati A, Nasser J, Nicolais L, Cusano A, Cutolo A (2004) Sens Actuators A 113(2):166. doi:10.1016/j.sna.2004.02.033 CrossRefGoogle Scholar
  70. 70.
    Vacher S, Molimard J, Gagnaire H, Vautrin A (2003) Polym Polym Compos 12(4):269Google Scholar
  71. 71.
    Wang Y, Han B, Kim DW, Bar Cohen A, Joseph P (2008) Exp Mech 48(1):107. doi:10.1007/s11340-007-9067-3 CrossRefGoogle Scholar
  72. 72.
    Harsch M, Karger-Kocsis J, Herzog F (2007) Polym Lett 1(4):226CrossRefGoogle Scholar
  73. 73.
    Wang Y, Woodworth L, Han B (2011) Exp Mech 51(7):1155. doi:10.1007/s11340-010-9410-y CrossRefGoogle Scholar
  74. 74.
    Othonos A, Kalli K (1999) Fiber Bragg gratings: fundamentals and applications in telecommunications and sensing. Artech House, NorwoodGoogle Scholar
  75. 75.
    Thomas CL, Bur AJ (1999) Polym Eng Sci 39(9):1619CrossRefGoogle Scholar
  76. 76.
    Fano V, Ortalli I, Pizzi S, Bonanini M (1997) Biomaterials 18(6):467CrossRefGoogle Scholar
  77. 77.
    Ochi M, Yamashita K, Shimbo M (2003) J Appl Polym Sci 43(11):2013CrossRefGoogle Scholar
  78. 78.
    Plepys A, Farris R (1990) Polymer 31(10):1932CrossRefGoogle Scholar
  79. 79.
    Sun J, Eidelman N, Lin-Gibson S (2009) Dent Mater 25(3):314CrossRefGoogle Scholar
  80. 80.
    Sharp LJ, Choi IB, Lee TE, Sy A, Suh BI (2003) J Dent 31(2):97CrossRefGoogle Scholar
  81. 81.
    Russell J (1993) SAMPE Q 24(2):28Google Scholar
  82. 82.
    Sadeghinia M, Jansen KMB, Ernst LJ (2012) Int J Adhesion Adhesives 32:82. doi:10.1016/j.ijadhadh.2011.10.007 CrossRefGoogle Scholar
  83. 83.
    Millischer A, Delaunay D (2001) J Reinf Plast Compos 20(6):495CrossRefGoogle Scholar
  84. 84.
    Prasatya P, McKenna GB, Simon SL (2001) J Compos Mater 35(10):826. doi:10.1177/002199801772662424 CrossRefGoogle Scholar
  85. 85.
    Holst M, Schänzlin K, Wenzel M, Xu J, Lellinger D, Alig I (2005) J Polym Sci Part B 43(17):2314CrossRefGoogle Scholar
  86. 86.
    White S, Hahn H (1992) J Compos Mater 26(16):2423CrossRefGoogle Scholar
  87. 87.
    Daniel IM, Wang T-M, Karalekas D, Gotro JT (1990) J Compos Technol Res 12(3):172CrossRefGoogle Scholar
  88. 88.
    Hu G, Luan J-E, Chew S (2009) J Electron Packag 131(1):14466CrossRefGoogle Scholar
  89. 89.
    Zhu WH, Guang L, Wei S, Che FX, Sun A, Wang CK, Tan HB, Zhao BZ, Chin NH (2007) Thermal, mechanical and multi-physics simulation experiments in microelectronics and micro-systems, 2007. EuroSime 2007. International Conference on, 16–18 April 2007, p 1Google Scholar
  90. 90.
    Ken O, Masumi S (2001) Polym Eng Sci 41(8):1373CrossRefGoogle Scholar
  91. 91.
    Crasto AS, Kim RY, Russell JD (2002) Polym Compos 23(3):454CrossRefGoogle Scholar
  92. 92.
    Sakaguchi RL, Versluis A, Douglas WH (1997) Dent Mater 13(4):233. doi:10.1016/s0109-5641(97)80034-6 CrossRefGoogle Scholar
  93. 93.
    Kim YK (2004) J Compos Mater 38(11):959CrossRefGoogle Scholar
  94. 94.
    Murukeshan V, Chan P, Ong L, Seah L (2000) Sens Actuators A 79(2):153CrossRefGoogle Scholar
  95. 95.
    Kalamkarov A, Fitzgerald S, MacDonald D (1999) Compos B Eng 30(2):167CrossRefGoogle Scholar
  96. 96.
    Lawrence CM, Nelson DV, Bennett TE, Spingarn JR (1997) SPIE, p 154Google Scholar
  97. 97.
    Mulle M, Collombet F, Olivier P, Zitoune R, Huchette C, Laurin F, Grunevald YH (2009) Compos Part A 40(10):1534CrossRefGoogle Scholar
  98. 98.
    Leng JS, Asundi A (2002) Smart Mater Struct 11:249CrossRefGoogle Scholar
  99. 99.
    Olivier PA (2006) Compos Part A 37(4):602CrossRefGoogle Scholar
  100. 100.
    Ersoy N, Tugutlu M (2009) Polym Eng Sci 50(1):84CrossRefGoogle Scholar
  101. 101.
    Garstka T, Ersoy N, Potter K, Wisnom M (2007) Compos Part A 38(12):2517CrossRefGoogle Scholar
  102. 102.
    Ifju PG, Kilday BC, Niu X, Liu S-C (1999) J Compos Mater 33(16):1511. doi:10.1177/002199839903301603 CrossRefGoogle Scholar
  103. 103.
    Ifju P, Niu X, Kilday B, Liu S, Ettinger S (2000) Exp Mech 40(1):22CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yasir Nawab
    • 1
  • Salma Shahid
    • 2
  • Nicolas Boyard
    • 4
  • Frédéric Jacquemin
    • 3
  1. 1.Laboratoire d’Ondes et Milieux Complexes, UMR6294 CNRSUniversité du HavreLe HavreFrance
  2. 2.Normandy University, UCBN, UR ABTE EA4651CaenFrance
  3. 3.Institut de Recherche en Génie Civil et Mécanique, UMR CNRS 6183, Université de NantesSaint-NazaireFrance
  4. 4.Université de Nantes, CNRS, Laboratoire de Thermocinétique de Nantes, UMR 6607NantesFrance

Personalised recommendations