Feasibility study of SiC-ceramics as a potential material for bone implants

Abstract

In this paper, we discuss silicon carbide (SiC) ceramics as potential materials for biomedical applications. SiC samples were prepared without addition of undesired elements that might have adverse health effect and were characterized with respect to mechanical and magnetic properties, bioactivity, wetting behavior, and release of ions. The materials characteristics are compared to those for Ti6Al4V alloy. Among the examined ceramics, SiC with MgO as sintering aid met the expectation to the greatest extent. Elastic modulus of the material with 24 % porosity is 80 GPa, flexural strength 180 MPa, and fracture toughness ~3 MPa m1/2. The material shows good wetting properties and is weakly diamagnetic. On the other hand, bioactivity estimated on the basis of hydroxyapatite formation in simulated body fluid is only achieved by surface modification. Thus, although SiC ceramics show potential for use in biomedical applications, it should be further developed to meet the requirements.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Gerhardt L-C, Boccaccini AR (2010) Materials 3(7):3867

    Article  CAS  Google Scholar 

  2. 2.

    Thieme M et al (2001) J Mater Sci Mater Med 12(3):225

    Article  CAS  Google Scholar 

  3. 3.

    Cadosch D et al (2009) J Biomed Mater Res Part A 91A(4):1252

    Article  CAS  Google Scholar 

  4. 4.

    Cadosch D et al (2009) J Biomed Mater Res Part A 91A(1):29

    Article  CAS  Google Scholar 

  5. 5.

    Okazaki Y, Gotoh E (2005) Biomaterials 26(1):11

    Article  CAS  Google Scholar 

  6. 6.

    Baikoussis NG et al (2011) Ann Thorac Surg 91(6):2006

    Article  Google Scholar 

  7. 7.

    Hargreaves BA et al (2011) Am J Roentgenol 197(3):547

    Article  Google Scholar 

  8. 8.

    Savarino L et al (2008) J Orthop Res 26(12):1569

    Article  CAS  Google Scholar 

  9. 9.

    Eichler J et al (2007) J Am Ceram Soc 90(9):2830

    Article  CAS  Google Scholar 

  10. 10.

    Chevalier J, Gremillard L (2009) J Eur Ceram Soc 29(7):1245

    Article  CAS  Google Scholar 

  11. 11.

    Cappi B et al (2010) J Biomed Mater Res Part A 93A(1):67

    CAS  Google Scholar 

  12. 12.

    Zawrah MF, El-Gazery M (2007) Mater Chem Phys 106(2–3):330

    Article  CAS  Google Scholar 

  13. 13.

    Mazzocchi M, Bellosi A (2008) J Mater Sci Mater Med 19(8):2881. doi:10.1007/s10856-008-3417-2

    Article  CAS  Google Scholar 

  14. 14.

    Mazzocchi M et al (2008) J Mater Sci Mater Med 19(8):2889

    Article  CAS  Google Scholar 

  15. 15.

    de Arellano-López AR et al (2004) Int J Appl Ceram Technol 1(1):56

    Article  Google Scholar 

  16. 16.

    Naji A, Harmand MF (1991) Biomaterials 12(7):690

    Article  CAS  Google Scholar 

  17. 17.

    Carlisle EM (1970) Science 167(3916):279

    Article  CAS  Google Scholar 

  18. 18.

    Miguel BS et al (2010) J Biomed Mater Res Part A 94A(4):1023

    Google Scholar 

  19. 19.

    Vitale-Brovarone C, Baino F, Verne E (2009) J Mater Sci Mater Med 20(2):643. doi:10.1007/s10856-008-3605-0

    Article  CAS  Google Scholar 

  20. 20.

    Bal BS et al (2010) J Biomed Mater Res Part B 93B(1):164

    CAS  Google Scholar 

  21. 21.

    Rade K et al (2012) J Mater Sci 47(7):3400. doi:10.1007/s10853-011-6187-z

    Article  CAS  Google Scholar 

  22. 22.

    Niihara K, Morena R, Hasselman DPH (1982) J Mater Sci Lett 1(1):13

    Article  CAS  Google Scholar 

  23. 23.

    Scancar J, Stibilj V, Milacic R (2004) Food Chem 85(1):151

    Article  CAS  Google Scholar 

  24. 24.

    Novotnik B et al (2012) J Anal At Spectrom 27(3):488

    Article  CAS  Google Scholar 

  25. 25.

    Kokubo T, Takadama H (2006) Biomaterials 27(15):2907

    Article  CAS  Google Scholar 

  26. 26.

    Borrajo JP et al (2006) Mat Sci Forum 970:514

    Google Scholar 

  27. 27.

    Corni I, Ryan MP, Boccaccini AR (2008) J Eur Ceram Soc 28(7):1353

    Article  CAS  Google Scholar 

  28. 28.

    Rade K et al (2011) J Mater Sci Eng A 1:301

    CAS  Google Scholar 

  29. 29.

    Rade K (2012) Development of silicon carbide based implants with improved biocompatibility and mechanical properties. Jožef Stefan International Postgraduate School, Ljubljana, p 88

    Google Scholar 

  30. 30.

    del Rio J, Beguiristain J, Duart J (2007) Eur Spine J 16(7):1055

    Article  Google Scholar 

  31. 31.

    Passi P et al (2002) J Mater Sci Mater Med 13(11):1083

    Article  CAS  Google Scholar 

  32. 32.

    Kumar V, Gill KD (2009) Arch Toxicol 83(11):965

    Article  CAS  Google Scholar 

  33. 33.

    Sarmiento-Gonzalez A et al (2009) Anal Bioanal Chem 393(1):335

    Article  CAS  Google Scholar 

  34. 34.

    Muller K, Valentine-Thon E (2006) Neuroendocrinol Lett 27:31

    Google Scholar 

  35. 35.

    Granchi D et al (2006) J Biomed Mater Res Part B 77B(2):257

    Article  CAS  Google Scholar 

  36. 36.

    McGarry S et al (2008) J Trauma Inj Infect Critic Care 64(2):430

    Article  CAS  Google Scholar 

  37. 37.

    Saravanapavan P et al (2003) J Biomed Mater Res Part A 66A(1):110

    Article  CAS  Google Scholar 

  38. 38.

    Best SM et al (2008) Bioceramics 20:985

    Google Scholar 

  39. 39.

    Peitl O, Dutra Zanotto E, Hench LL (2001) J Non Cryst Solids 292(1–3):115

    Article  CAS  Google Scholar 

  40. 40.

    Ermer E, Wieslsaw P, Ludoslsaw S (2001) Solid State Ionics 141:523

    Article  Google Scholar 

  41. 41.

    Borrajo JP et al (2006) Bol Soc Esp Ceram Vidrio 45(2):109

    Article  CAS  Google Scholar 

  42. 42.

    Gonzalez P et al (2003) Biomaterials 24(26):4827

    Article  CAS  Google Scholar 

  43. 43.

    Lelli M et al (2010) Adv Eng Mater 12(8):B348

    Article  Google Scholar 

  44. 44.

    Galois L, Mainard D (2004) Acta Orthop Belg 70:598

    Google Scholar 

  45. 45.

    Santin M (ed) (2009) Strategies in regenerative medicine: integrating biology with materials design. Springer, New York

    Google Scholar 

Download references

Acknowledgements

This study has been performed within the National program P2-0084 and the PhD. study of Ms. Katja Rade. Slovenian Research Agency is acknowledged for financial support. Mr. Darko Eterovič is acknowledged for mechanical testing, Dr. Benjamin Podmiljšak for magnetic susceptibility measurements and Ms. Ana Gantar for help in leaching tests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Saša Novak.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rade, K., Martinčič, A., Novak, S. et al. Feasibility study of SiC-ceramics as a potential material for bone implants. J Mater Sci 48, 5295–5301 (2013). https://doi.org/10.1007/s10853-013-7321-x

Download citation

Keywords

  • Inductively Couple Plasma Mass Spectrometry
  • Flexural Strength
  • Simulated Body Fluid
  • Bioactive Glass
  • Physiological Solution