Advertisement

Journal of Materials Science

, Volume 48, Issue 15, pp 5295–5301 | Cite as

Feasibility study of SiC-ceramics as a potential material for bone implants

  • Katja Rade
  • Anže Martinčič
  • Saša Novak
  • Spomenka Kobe
Article

Abstract

In this paper, we discuss silicon carbide (SiC) ceramics as potential materials for biomedical applications. SiC samples were prepared without addition of undesired elements that might have adverse health effect and were characterized with respect to mechanical and magnetic properties, bioactivity, wetting behavior, and release of ions. The materials characteristics are compared to those for Ti6Al4V alloy. Among the examined ceramics, SiC with MgO as sintering aid met the expectation to the greatest extent. Elastic modulus of the material with 24 % porosity is 80 GPa, flexural strength 180 MPa, and fracture toughness ~3 MPa m1/2. The material shows good wetting properties and is weakly diamagnetic. On the other hand, bioactivity estimated on the basis of hydroxyapatite formation in simulated body fluid is only achieved by surface modification. Thus, although SiC ceramics show potential for use in biomedical applications, it should be further developed to meet the requirements.

Keywords

Inductively Couple Plasma Mass Spectrometry Flexural Strength Simulated Body Fluid Bioactive Glass Physiological Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study has been performed within the National program P2-0084 and the PhD. study of Ms. Katja Rade. Slovenian Research Agency is acknowledged for financial support. Mr. Darko Eterovič is acknowledged for mechanical testing, Dr. Benjamin Podmiljšak for magnetic susceptibility measurements and Ms. Ana Gantar for help in leaching tests.

References

  1. 1.
    Gerhardt L-C, Boccaccini AR (2010) Materials 3(7):3867CrossRefGoogle Scholar
  2. 2.
    Thieme M et al (2001) J Mater Sci Mater Med 12(3):225CrossRefGoogle Scholar
  3. 3.
    Cadosch D et al (2009) J Biomed Mater Res Part A 91A(4):1252CrossRefGoogle Scholar
  4. 4.
    Cadosch D et al (2009) J Biomed Mater Res Part A 91A(1):29CrossRefGoogle Scholar
  5. 5.
    Okazaki Y, Gotoh E (2005) Biomaterials 26(1):11CrossRefGoogle Scholar
  6. 6.
    Baikoussis NG et al (2011) Ann Thorac Surg 91(6):2006CrossRefGoogle Scholar
  7. 7.
    Hargreaves BA et al (2011) Am J Roentgenol 197(3):547CrossRefGoogle Scholar
  8. 8.
    Savarino L et al (2008) J Orthop Res 26(12):1569CrossRefGoogle Scholar
  9. 9.
    Eichler J et al (2007) J Am Ceram Soc 90(9):2830CrossRefGoogle Scholar
  10. 10.
    Chevalier J, Gremillard L (2009) J Eur Ceram Soc 29(7):1245CrossRefGoogle Scholar
  11. 11.
    Cappi B et al (2010) J Biomed Mater Res Part A 93A(1):67Google Scholar
  12. 12.
    Zawrah MF, El-Gazery M (2007) Mater Chem Phys 106(2–3):330CrossRefGoogle Scholar
  13. 13.
    Mazzocchi M, Bellosi A (2008) J Mater Sci Mater Med 19(8):2881. doi: 10.1007/s10856-008-3417-2 CrossRefGoogle Scholar
  14. 14.
    Mazzocchi M et al (2008) J Mater Sci Mater Med 19(8):2889CrossRefGoogle Scholar
  15. 15.
    de Arellano-López AR et al (2004) Int J Appl Ceram Technol 1(1):56CrossRefGoogle Scholar
  16. 16.
    Naji A, Harmand MF (1991) Biomaterials 12(7):690CrossRefGoogle Scholar
  17. 17.
    Carlisle EM (1970) Science 167(3916):279CrossRefGoogle Scholar
  18. 18.
    Miguel BS et al (2010) J Biomed Mater Res Part A 94A(4):1023Google Scholar
  19. 19.
    Vitale-Brovarone C, Baino F, Verne E (2009) J Mater Sci Mater Med 20(2):643. doi: 10.1007/s10856-008-3605-0 CrossRefGoogle Scholar
  20. 20.
    Bal BS et al (2010) J Biomed Mater Res Part B 93B(1):164Google Scholar
  21. 21.
    Rade K et al (2012) J Mater Sci 47(7):3400. doi: 10.1007/s10853-011-6187-z CrossRefGoogle Scholar
  22. 22.
    Niihara K, Morena R, Hasselman DPH (1982) J Mater Sci Lett 1(1):13CrossRefGoogle Scholar
  23. 23.
    Scancar J, Stibilj V, Milacic R (2004) Food Chem 85(1):151CrossRefGoogle Scholar
  24. 24.
    Novotnik B et al (2012) J Anal At Spectrom 27(3):488CrossRefGoogle Scholar
  25. 25.
    Kokubo T, Takadama H (2006) Biomaterials 27(15):2907CrossRefGoogle Scholar
  26. 26.
    Borrajo JP et al (2006) Mat Sci Forum 970:514Google Scholar
  27. 27.
    Corni I, Ryan MP, Boccaccini AR (2008) J Eur Ceram Soc 28(7):1353CrossRefGoogle Scholar
  28. 28.
    Rade K et al (2011) J Mater Sci Eng A 1:301Google Scholar
  29. 29.
    Rade K (2012) Development of silicon carbide based implants with improved biocompatibility and mechanical properties. Jožef Stefan International Postgraduate School, Ljubljana, p 88Google Scholar
  30. 30.
    del Rio J, Beguiristain J, Duart J (2007) Eur Spine J 16(7):1055CrossRefGoogle Scholar
  31. 31.
    Passi P et al (2002) J Mater Sci Mater Med 13(11):1083CrossRefGoogle Scholar
  32. 32.
    Kumar V, Gill KD (2009) Arch Toxicol 83(11):965CrossRefGoogle Scholar
  33. 33.
    Sarmiento-Gonzalez A et al (2009) Anal Bioanal Chem 393(1):335CrossRefGoogle Scholar
  34. 34.
    Muller K, Valentine-Thon E (2006) Neuroendocrinol Lett 27:31Google Scholar
  35. 35.
    Granchi D et al (2006) J Biomed Mater Res Part B 77B(2):257CrossRefGoogle Scholar
  36. 36.
    McGarry S et al (2008) J Trauma Inj Infect Critic Care 64(2):430CrossRefGoogle Scholar
  37. 37.
    Saravanapavan P et al (2003) J Biomed Mater Res Part A 66A(1):110CrossRefGoogle Scholar
  38. 38.
    Best SM et al (2008) Bioceramics 20:985Google Scholar
  39. 39.
    Peitl O, Dutra Zanotto E, Hench LL (2001) J Non Cryst Solids 292(1–3):115CrossRefGoogle Scholar
  40. 40.
    Ermer E, Wieslsaw P, Ludoslsaw S (2001) Solid State Ionics 141:523CrossRefGoogle Scholar
  41. 41.
    Borrajo JP et al (2006) Bol Soc Esp Ceram Vidrio 45(2):109CrossRefGoogle Scholar
  42. 42.
    Gonzalez P et al (2003) Biomaterials 24(26):4827CrossRefGoogle Scholar
  43. 43.
    Lelli M et al (2010) Adv Eng Mater 12(8):B348CrossRefGoogle Scholar
  44. 44.
    Galois L, Mainard D (2004) Acta Orthop Belg 70:598Google Scholar
  45. 45.
    Santin M (ed) (2009) Strategies in regenerative medicine: integrating biology with materials design. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Katja Rade
    • 1
    • 2
  • Anže Martinčič
    • 2
    • 3
  • Saša Novak
    • 1
    • 2
  • Spomenka Kobe
    • 1
    • 2
  1. 1.Department for Nanostructured MaterialsJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
  3. 3.Department for Environmental ChemistryJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations