Skip to main content
Log in

Electronic behavior and impedance analysis of microcrystalline LiFePO4

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report on the structure, DC electrical conductivity, dielectric, and impedance spectroscopic characterization of microcrystalline LiFePO4 cathode material. Frequency variation of the dielectric constant (ε′) exhibits the dispersion that can be modeled with a modified Debye’s function, which considers the possibility of more than one ion contributing to the relaxation. At a constant frequency, the dielectric constant value increases with increasing temperature. At 100 kHz, the measured values of ε′ at 433 and 473 K are 4.6 and 5.7, respectively. The real (Z′) and imaginary part (Z″) of impedance as a function of frequency at different temperatures indicate the existence of relaxation processes and their distribution in LiFePO4. Cole–Cole plots at different temperatures indicate that the conductivity is predominantly due to the intrinsic bulk grains. Temperature variation of DC electrical conductivity (σ dc) (273–573 K) follows the Arrhenius relationship. Activation energy (E a) calculated from the ln σ dc versus 1000/T plot is 0.44 eV, which indicates the predominant electronic conduction mechanism in LiFePO4. The AC conductivity increases with increasing frequency and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Maxisch T, Zhou F, Ceder G (2006) Phys Rev B 73:104301

    Article  Google Scholar 

  2. Shi S, Ouyang C, Xiong Z, Liu L, Wang Z, Li H, Wang DS, Chen L, Huang X (2005) Phys Rev B 71:144404

    Article  Google Scholar 

  3. Biendicho JJ, West AR (2012) Solid State Ionics 226:41

    Article  CAS  Google Scholar 

  4. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188

    Article  CAS  Google Scholar 

  5. Huang YH, Goodenough JB (2008) Chem Mater 20:7237

    Article  CAS  Google Scholar 

  6. Ait-Salah A, Dodd J, Mauger A, Yazami R, Gendron F, Julien CM (2006) Z Anorg Allg Chem 632:1598

    Article  CAS  Google Scholar 

  7. Ramana CV, Ait-Salah A, Utsunomiya S, Morhange JF, Mauger A, Gendron F, Julien CM (2007) J Phys Chem C 111:1049

    Article  CAS  Google Scholar 

  8. Julien CM, Ait Salah A, Gendron F, Morhange JF, Mauger A, Ramana CV (2006) Scripta Mater 55:1179

    Article  CAS  Google Scholar 

  9. Yao J, Konstantinov K, Wang GX, Liu HK (2007) J Solid State Electrochem 11:177

    Article  CAS  Google Scholar 

  10. Ding K, Li W, Wang Q, Wei S, Guo Z (2012) J Nanosci Nanotechnol 12:3813

    Google Scholar 

  11. Zhao D, Feng YL, Wang YG, Xia YY (2013) Electrochim Acta 88:632

    Article  CAS  Google Scholar 

  12. Liao L, Cheng X, Ma Y, Zuo P, Fang W, Yin G, Gao Y (2013) Electrochim Acta 87:466

    Article  CAS  Google Scholar 

  13. Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche JB, Morcette M, Tarascon JM, Masquelier C (2005) J Electrochem Soc 152:A913

    Article  CAS  Google Scholar 

  14. Xu YN, Chung SY, Bloking JT, Chiang YM, Ching WY (2004) Electrochem Solid State Lett 7:A131

    Article  CAS  Google Scholar 

  15. Takahashi M, Tobishima S, Takei K, Sakurai Y (2002) Solid State Ionics 148:283

    Article  CAS  Google Scholar 

  16. Amin R, Lin C, Peng J, Weichert K, Acarturk T, Starke U, Maier J (2009) Adv Funct Mater 19:1697

    Article  CAS  Google Scholar 

  17. Winter M, Besenhard J, Spahr M, Novak P (1998) Adv Mater 10:725

    Article  CAS  Google Scholar 

  18. Gaberscek M, Moskon J, Erjavec B, Dominko R, Jamnik J (2008) Electrochem Solid State Lett 11:A170

    Article  CAS  Google Scholar 

  19. Lai W, Ciucci F (2011) J Electrochem Soc 158(2):A115

    Article  CAS  Google Scholar 

  20. Ciucci F, Lai W (2012) Electrochim Acta 81:205

    Article  CAS  Google Scholar 

  21. Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86–748. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  22. Bini M, Mozzati MC, Galinetto P, Capsoni D, Ferrari S, Grandi MS, Massarotti V (2009) J Solid State Chem 182:1972

    Article  CAS  Google Scholar 

  23. Smith J, Wijn HPJ (1965) Ferrites. Philips Technical Library, Eindhoven

    Google Scholar 

  24. Kamala Bharathi K, Markandeyulu G, Ramana CV (2011) J Electrochem Soc 158:G71

    Article  Google Scholar 

  25. Irvine JTS, Sinclair DC, West AR (2004) Adv Mater 2:132

    Article  Google Scholar 

  26. Amin R, Maier J (2008) Solid State Ionics 178:1831

    Article  CAS  Google Scholar 

  27. Anderson JC (1964) Dielectrics. Spottiswoode, Ballantyne & Co Ltd., London

    Google Scholar 

  28. Vemuri RS, Kamala Bharathi K, Gullapalli SK, Ramana CV (2010) ACS Appl Mater Interfaces 2:2623

    Article  CAS  Google Scholar 

  29. Maier J, Amin R (2008) J Electrochem Soc 155:A339

    Article  CAS  Google Scholar 

  30. Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM (2007) Chem Mater 19:3740

    Article  CAS  Google Scholar 

  31. Kamala Bharathi K, Markandeyulu G, Ramana CV (2010) Electrochem Solid State Lett 13:G98

    Article  Google Scholar 

  32. Patro LN, Hariharan K (2009) Mater Chem Phys 116:81

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kamala Bharathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharathi, K.K., Patro, L.N. & Ramana, C.V. Electronic behavior and impedance analysis of microcrystalline LiFePO4 . J Mater Sci 48, 5063–5070 (2013). https://doi.org/10.1007/s10853-013-7294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7294-9

Keywords

Navigation