Early anisotropic expansion of aluminium foam precursors

Abstract

This work reports a detailed study on the early expansion (before the melting point) of powder metallurgical (PM) aluminium foam precursors and its influence on the intrinsic anisotropy existing in the final cellular structure of PM foams. Hot uniaxial compressed tablets, rectangular and cylindrical extruded profiles and thixocast PM precursors have been considered to evaluate the effect of the processing technique on the early expansion behaviour. An optical device has been used to register, in situ, the dissimilar expansion of the precursors in the three spatial directions. Cellular morphology has been examined by X-ray microtomography and correlated to expansion behaviour. Results demonstrated a high influence of the processing technique and its correlation with powder debonding in preferential directions which, in combination with the early TiH2 decomposition, generates elongated cracks and causes an anisotropic expansion at early foaming stages. As a consequence, a remaining structural anisotropy is found in the final solid cellular material, even at high porosities. A discussion of the possible factors affecting this early expansion behaviour, complemented with possible solutions to minimize it, is provided in the paper.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Ashby MF (2000) Metal foams: a design guide. Butterworth–Heinemann, Oxford

    Google Scholar 

  2. 2.

    Banhart J (2000) J Met 52:22

    CAS  Google Scholar 

  3. 3.

    Yu CJ, Eifert HH, Banhart J, Baumeister J (1998) Mater Res Innov 2:181

    Article  CAS  Google Scholar 

  4. 4.

    Banhart J (2001) Prog Mater Sci 46:559

    Article  CAS  Google Scholar 

  5. 5.

    Ito K, Kobayashi H (2006) Adv Eng Mater 8:828

    Article  CAS  Google Scholar 

  6. 6.

    Baumgärtner F, Duarte I, Banhart J (2000) Adv Eng Mater 2:168

    Article  Google Scholar 

  7. 7.

    Banhart J, Wolfgand S (2008) Adv Eng Mater 10:793

    Article  CAS  Google Scholar 

  8. 8.

    Banhart J, Baumeister J (1998) J Mater Sci 33:1431. doi:10.1023/A:1004383222228

    Article  CAS  Google Scholar 

  9. 9.

    McCullough KYG, Fleck NA, Ashby MF (1999) Acta Mater 47:2331

    Article  CAS  Google Scholar 

  10. 10.

    Motz C, Rippan R (2002) Acta Mater 50:2013

    Article  CAS  Google Scholar 

  11. 11.

    Nosko M, Simancik F, Florek R (2010) Mater Sci Eng A 527:5900

    Article  Google Scholar 

  12. 12.

    Gibson LJ, Ashby MF (1988) Cellular solids: structure and properties. Pergamon Press, Oxford

    Google Scholar 

  13. 13.

    Duarte I, Banhart J (2000) Acta Mater 48:2349

    Article  CAS  Google Scholar 

  14. 14.

    Matijasevic B, Banhart J (2006) Scripta Mater 54:503

    Article  CAS  Google Scholar 

  15. 15.

    Kennedy AR (2002) J Mater Sci Lett 21:1555

    Article  CAS  Google Scholar 

  16. 16.

    Helfen L, Baumbach T, Stanzick H, Banhart J, Elmoutaouakkil A, Cloetens P (2002) Adv Eng Mater 4:808

    Article  CAS  Google Scholar 

  17. 17.

    Helfen L, Baumbach T, Pernot P, Cloetens P, Stanzick H, Schladitz K, Banhart J (2005) App Phys Lett 86:231907

    Article  Google Scholar 

  18. 18.

    Körner C, Berger F, Arnold M, Stadelmann C, Singer RF (2000) Mater Sci Technol 16:781

    Article  Google Scholar 

  19. 19.

    Youn SW, Kang CG (2004) Metall Mater Trans B 35:769

    Article  Google Scholar 

  20. 20.

    Banhart J, Stanzick H, Helfen L, Baumbach T (2001) App Phys Lett 78:1152

    Article  CAS  Google Scholar 

  21. 21.

    Garcia-Moreno F, Fromme M, Banhart J (2004) Adv Eng Mater 6:416

    Article  Google Scholar 

  22. 22.

    Garcia-Moreno F, Babcsan N, Banhart J (2005) Colloids Surf A 263:290

    Article  CAS  Google Scholar 

  23. 23.

    Brunkel O, Odenbach S (2006) J Phys Condens Matter 18:6493

    Article  Google Scholar 

  24. 24.

    Stanzick H, Danilkin S, Klenke J, Banhart J (2002) Appl Phys A 74:1118

    Article  Google Scholar 

  25. 25.

    Mukherjee M, Garcia-Moreno F, Banhart J (2010) Acta Mater 58:6358

    Article  CAS  Google Scholar 

  26. 26.

    Solórzano E, Antunes M, Saiz-Arroyo C, Rodriguez-Pérez MA, Velasco JI, de Saja JA (2012) J Appl Polym Sci 125:1059

    Article  Google Scholar 

  27. 27.

    Weise J, Stanzick H, Banhart J (2003) In: Banhart J, Fleck NA, Mortensen A (eds) Cellular metals: manufacture, properties and applications. MIT Publishing, Berlin, p 169

    Google Scholar 

  28. 28.

    Abramoff MD, Magelhaes PJ, Ram SJ (2004) Bioph Int 11:36

    Google Scholar 

  29. 29.

    Olurin OB, Arnold M, Körner C, Singer RF (2002) Mater Sci Eng A 328:334

    Article  Google Scholar 

  30. 30.

    Jimenez C, Garcia-Moreno F, Mukherjee M, Goerke O, Banhart J (2009) Scripta Mater 61:552

    Article  CAS  Google Scholar 

  31. 31.

    Wafers K, Misra C (1987) Alcoa Tech Paper 19:37

    Google Scholar 

  32. 32.

    Estrada JL, Duszczyk J, Korevaar BM (1991) J Mater Sci 26:1431. doi:10.1007/BF00544650

    Article  CAS  Google Scholar 

  33. 33.

    Shearouse J, Mikucki B (1994) Mater Manuf 103:542

    Google Scholar 

  34. 34.

    Garcia-Moreno F, Banhart J (2007) Colloids Surf A 309:264

    Article  CAS  Google Scholar 

  35. 35.

    Mukherjee M, Garcia-Moreno F, Jimenez C, Banhart J (2010) Adv Eng Mater 12:472

    Article  CAS  Google Scholar 

  36. 36.

    Gergely V, Clyne B (2000) Adv Eng Mater 2:175

    Article  CAS  Google Scholar 

  37. 37.

    Kennedy AR (2002) Scripta Mater 47:763

    Article  CAS  Google Scholar 

  38. 38.

    Matijasevic-Lux B, Banhart J, Fiechter S, Görke O, Wanderka N (2006) Acta Mater 54:1887

    Article  CAS  Google Scholar 

  39. 39.

    Gergely V, Curran DC, Clyne TW (2003) Compos Sci Technol 63:2301

    Article  CAS  Google Scholar 

  40. 40.

    Haesche M, Lehmhus D, Weise J, Wichmann M, Mocellin ICM (2010) J Mater Sci Technol 26:845

    Article  CAS  Google Scholar 

  41. 41.

    Lehmhus D, Busse M (2004) Adv Eng Mater 6:391

    Article  CAS  Google Scholar 

  42. 42.

    Helwig HM, Garcia-Moreno F, Banhart J (2011) J Mater Sci 46:5227. doi:10.1007/s10853-011-5460-5

    Article  CAS  Google Scholar 

  43. 43.

    Lehmhus D (2010) Adv Eng Mater 12:465

    Article  CAS  Google Scholar 

  44. 44.

    Jimenez C, Garcia-Moreno F, Banhart J, Zehl G (2008) In: Lefebvre LP, Banhart J, Dunand D (eds) Porous metals and metallic foams. DEStech Pub, Lancaster, p 59

    Google Scholar 

  45. 45.

    Asavavisithchai S, Kennedy AR (2006) Adv Eng Mater 8:810

    Article  CAS  Google Scholar 

  46. 46.

    Helwig HM, Hiller S, Garcia-Moreno F, Banhart J (2009) Metall Mater Trans B 40:755

    Article  Google Scholar 

  47. 47.

    Jimenez C, Garcia-Moreno F, Pfretzschner B, Klaus M, Wollgarten M, Zizak L, Schumacher G, Tovar M, Banhart J (2011) Acta Mater 59:6318

    Article  CAS  Google Scholar 

  48. 48.

    Illekova E, Harnuskova J, Florek R, Simancik F, Matko I, Svec P (2011) J Therm Anal Calorim 105:583

    Article  CAS  Google Scholar 

  49. 49.

    Haesche M, Weise J, García-Moreno F, Banhart J (2008) Mat Sci Eng A 480:283

    Article  Google Scholar 

  50. 50.

    Bonaccorsi L, Proverbio E (2006) Adv Eng Mater 8:864

    Article  CAS  Google Scholar 

  51. 51.

    Asavavisithchai S, Kennedy AR (2006) Scripta Mater 54:1331

    Article  CAS  Google Scholar 

  52. 52.

    Aguirre-Perales LY, Jung IH, Drew RAL (2012) Acta Mater 60:759

    Article  CAS  Google Scholar 

  53. 53.

    Ibrahim A, Korner C, Singer RF (2008) Adv Eng Mater 19:845

    Article  Google Scholar 

  54. 54.

    Proa-Flores PM, Mendoza-Suarez G, Drew RAL (2012) J Mater Sci 47:455. doi:10.1007/s10853-011-5820-1

    Article  CAS  Google Scholar 

  55. 55.

    Frei J, Gergely V, Mortensen A, Clyne TW (2002) Adv Eng Mater 4:749

    Article  CAS  Google Scholar 

  56. 56.

    Suzuki R, Kitazono K (2010) J Jpn Inst Met 74:314

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Alulight Company in Austria and the IFAM Bremen institute (Dr. Weise) which supplied the materials. In addition, the financial support of Spanish Ministry of Science and Education (FPU Grant Ref-AP-2007-03318, JCI-2011-09775, MAT 2009-14001-C02-01, MAT 2012-34901) and the Junta of Castille and Leon (VA174A12-2) is also acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Solórzano.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lázaro, J., Solórzano, E., de Saja, J.A. et al. Early anisotropic expansion of aluminium foam precursors. J Mater Sci 48, 5036–5046 (2013). https://doi.org/10.1007/s10853-013-7291-z

Download citation

Keywords

  • Foam
  • Linear Expansion
  • Aluminium Foam
  • Extrusion Direction
  • Area Expansion