Skip to main content

Thermochromic composite fibres containing liquid crystals formed via melt extrusion

Abstract

A three-layered composite fibre has been generated via a modified wire-coating melt co-extrusion process. The continuous fibre consists of a thermochromic liquid crystalline (TLC) layer encapsulated between a transparent polypropylene outer sheath and a black polyether ether ketone inner core. The fibres exhibit clear thermochromic behaviour consistent with the behaviour of unincorporated TLCs, and have been formed into a textile. The presence of the black inner core was found to be the key for the clear retention of colour within the fibres against both white and black backgrounds. The temperature-sensitive fibres and textiles can be applied to a variety of thermal mapping applications, such as in the medical and engineering fields, due to the tunable nature of TLCs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Malherbe I, Sanderson RD, Smit E (2010) Polymer 51:5037

    Article  CAS  Google Scholar 

  2. 2.

    Carlyle T, Rivera M, inventors (2003) Meltspun thermochromic fabrics. US patent 2003/0087566 A1, May 8

  3. 3.

    Ono Y, Ishimura N, Shibahashi Y, inventors (2002) Thermochromic acrylic synthetic fiber, its processed article, and process for producing thermochromic acrylic synthetic fiber. US patent 6444313, Sept 3

  4. 4.

    Rubacha M (2007) Polym Adv Technol 18:238

    Article  Google Scholar 

  5. 5.

    Shibahashi Y, Nakasuji N, Inagaki H, et al. inventors (1987) Thermochromic textile material. US patent 4681791, July 21

  6. 6.

    Van der Schueren L, De Clerck K (2010) Text Res J 80(7):590

    Article  Google Scholar 

  7. 7.

    Li F, Zhao Y, Wang S et al (2009) J Appl Polym Sci 112(1):269

    Article  CAS  Google Scholar 

  8. 8.

    Laforgue A, Rouget G, Dubost S, Champagne MF, Robitaille L (2012) ACS Appl Mater Interfaces 4(6):3163

    Article  CAS  Google Scholar 

  9. 9.

    Christie RM, Robertson S (2007) Colour Des Creativity 1(5):1

    Google Scholar 

  10. 10.

    Kakade VU, Lock GD, Wilson M, Owen JM, Mayhew JE (2009) Int J Heat Fluid Fl 30:950

    Article  CAS  Google Scholar 

  11. 11.

    Parsley M (1991) The use of thermochromic liquid crystals in research applications, thermal mapping and non-destructive testing. Seventh IEEE SEMI-THERM™ Symposium, pp 53–58

  12. 12.

    Ghorab MG (2011) Appl Therm Eng 31:77

    Article  CAS  Google Scholar 

  13. 13.

    Smith CR, Sabatino DR, Praisner TJ (2001) Exp Fluids 30:190

    Article  CAS  Google Scholar 

  14. 14.

    Stasiek J, Stasiek A, Jewartowski M, Collins MW (2006) Opt Laser Technol 38:243

    Article  Google Scholar 

  15. 15.

    Jernigan L, inventor (2011) Use of heat sensitive color changing formula to detect and prevent the onset of decubitus ulcers. US patent 2011/0028804 A1, Feb 3

  16. 16.

    Stasiek JA, Kowalewski TA (2002) Opto Electron Rev 10(1):1

    CAS  Google Scholar 

  17. 17.

    Buirley WL, Koopman DE, McQuain DB, Reeves WH, inventors (1984) Microencapsulated cholesteric liquid crystal temperature measuring device for determining the temperature of non-planar or planar surfaces. US patent 4433637, Feb 28

  18. 18.

    Flam E, inventor (1993) Method of monitoring the condition of the skin or wound. US patent 5181905, Jan 26

  19. 19.

    Collings PJ, Hird M (eds) (1997) Introduction to liquid crystals: chemistry and physics. Taylor & Francis Ltd., London

    Google Scholar 

  20. 20.

    Hay JL, Hollingsworth DK (1996) Exp Therm Fluid Sci 12:1

    Article  CAS  Google Scholar 

  21. 21.

    Gray GW (1987) Thermotropic liquid crystals. Wiley on behalf of the Society of Chemical Industry, vol 22, Chichester

    Google Scholar 

  22. 22.

    Sage I (2011) Liq Cryst 38(11–12):1551

    Article  CAS  Google Scholar 

  23. 23.

    Parsley M (1991) The Hallcrest handbook of thermochromic liquid crystal technology. Hallcrest, Inc., Glenview

    Google Scholar 

  24. 24.

    Anderson MR, Baughn JW (2004) J Heat Transfer 126:339

    Article  CAS  Google Scholar 

  25. 25.

    Scala LC, Dixon GD (1970) Mol Cryst Liq Cryst 10:411

    Article  CAS  Google Scholar 

  26. 26.

    Drzaic PS (ed) (1995) Liquid crystal dispersions. World Scientific, Singapore

    Google Scholar 

  27. 27.

    Fisch MR (ed) (2004) Liquid crystals, laptops and life. World Scientific Publishing, Singapore

    Google Scholar 

  28. 28.

    Spector D, inventor (1987) Fabrics and garments formed thereby having thermally-sensitive chromatic properties. US patent 4642250, Feb 10

  29. 29.

    Ruggeri C, inventor (1985) Textile material of a Dark Fabric, leather or hide with layer of microencapsulated liquid crystals. US patent 4510188, April 9

  30. 30.

    Kutz M (ed) (2002) Handbook of materials selection. Wiley, New York

    Google Scholar 

  31. 31.

    van der Werff L, Kyratzis IL, Cranston R, et al. inventors (2012) Composite sensor fibres and applications therefor. US patent PCT/AU2012/000916

Download references

Acknowledgements

This work was carried out with the financial support of Smith & Nephew, CSIRO, and Monash University. The authors would like to thank John Ward and Mark Greaves (CSIRO) for facilitating the optical microscopy work, and LCR Hallcrest for their guidance and for providing a selection of pre-formulated thermochromic liquid crystalline mixtures.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Louise van der Werff.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van der Werff, L., Kyratzis, I.L., Robinson, A. et al. Thermochromic composite fibres containing liquid crystals formed via melt extrusion. J Mater Sci 48, 5005–5011 (2013). https://doi.org/10.1007/s10853-013-7287-8

Download citation

Keywords

  • Composite Fibre
  • Inner Core
  • Melt Flow Index
  • Pitch Length
  • Liquid Crystalline Material