Skip to main content
Log in

Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The objective of this work is to study the effect of grain refinement using equal channel angular pressing with parallel channels (ECAP-PC) on microstructure, mechanical properties, and electrical conductivity of an Al–Mg–Si alloy. The coarse grained (CG) material is subjected to ECAP-PC processing at 100 °C for 1, 2, and 6 passes. Mechanical behavior of the Al–Mg–Si alloy after ECAP-PC processing and its electrical conductivity are analyzed with respect to the microstructure developed during ECAP-PC processing. The effect of artificial aging (AA) on the microstructure, mechanical properties, and electrical conductivity of the ECAP-PC processed Al–Mg–Si alloy is investigated. It is shown that the microstructure developed during ECAP-PC processing affects the kinetics of the aging process that, in turn, affects the mechanical properties and electrical conductivity of the material. It is demonstrated that both mechanical properties and electrical conductivity of the Al–Mg–Si alloy can be simultaneously enhanced via intelligent microstructural design through optimization of the thermo-mechanical processing applied to this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sabirov I, Murashkin M, Valiev RZ (2013) Mater Sci Eng A 560:1

    Article  CAS  Google Scholar 

  2. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  3. Kawasaki M, Langdon TG (2007) J Mater Sci 42:1782. doi:10.1007/s10853-006-0954-2

    Article  CAS  Google Scholar 

  4. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  5. Liddicoat PV, Liao XZ, Zhao YH, Zhu YT, Murashkin MY, Lavernia EJ, Valiev RZ, Ringer SP (2010) Nat Commun 1:63

    Article  Google Scholar 

  6. Valiev RZ, Enikeev NA, Murashkin MYu, Kazykhanov VU, Sauvage X (2010) Scr Mater 63:949

    Article  CAS  Google Scholar 

  7. Bobruk EV, Murashkin MYu, Kazykhanov VU, Valiev RZ (2012) Rev Adv Mater Sci 31:14

    Google Scholar 

  8. Ralston KD, Birbilis N, Davies CHJ (2010) Scr Mater 63:1201

    Article  CAS  Google Scholar 

  9. Wang CT, Gao N, Wood RJK, Langdon TG (2011) J Mater Sci 46:123. doi:10.1007/s10853-010-4862-0

    Article  Google Scholar 

  10. Valiev RZ, Enikeev NA, Langdon TG (2011) Kovove Mater 49:1

    CAS  Google Scholar 

  11. Sauvage X, Ganeev A, Ivanisenko Y, Enikeev N, Murashkin M, Valiev R (2012) Adv Eng Mater 14:968

    Article  CAS  Google Scholar 

  12. Kim WJ, Kim JK, Park TY, Hong SI, Kim DI, Kim YS, Lee JD (2002) Metall Mater Trans A 33:3155

    Article  Google Scholar 

  13. Mckenzie PWJ, Lapovok R (2010) Acta Mater 58:3198

    Article  CAS  Google Scholar 

  14. Mckenzie PWJ, Lapovok R (2010) Acta Mater 58:3212

    Article  CAS  Google Scholar 

  15. Rezaei MR, Toroghinejad MR, Ashrafizadeh F (2011) J Mater Proc Technol 211:1184

    Article  CAS  Google Scholar 

  16. Nurislamova G, Sauvage X, Murashkin M, Islamgaliev R, Valiev R (2008) Philos Mag Lett 88:459

    Article  CAS  Google Scholar 

  17. Moreno-Valle EC, Sabirov I, Perez-Prado MT, Murashkin MY, Bobruk EV, Valiev RZ (2011) Mater Lett 65:2917

    Article  CAS  Google Scholar 

  18. Sabirov I, Estrin Y, Barnett MR, Timokhina I, Hodgson PD (2008) Scr Mater 58:163

    Article  CAS  Google Scholar 

  19. Roven HJ, Nesboe H, Werenskiold JC, Seibert T (2005) Mater Sci Eng A 410–411:426

    Google Scholar 

  20. Valiev RZ, Sabirov I, Zhilyaev AP, Langdon TG (2012) JOM 64:1134

    Article  CAS  Google Scholar 

  21. Valiev RZ, Langdon TG (2011) Metall Mater Trans A 42:2942

    Article  CAS  Google Scholar 

  22. Ferrasse S, Segal VM, Alford F, Kardokus J, Strothers S (2008) Mater Sci Eng, A 493:130

    Article  Google Scholar 

  23. Polmear I (2006) Light alloys: from traditional alloys to nanocrystals. Elsevier, Oxford

    Google Scholar 

  24. Murashkin MYu, Bobruk EV, Kil’mametov AR, Valiev RZ (2009) Phys Metal Metallogr 108:415

    Article  Google Scholar 

  25. Valiev RZ, Murashkin MYu, Bobruk EV, Raab GI (2009) Mater Trans 50:87

    Article  CAS  Google Scholar 

  26. Raab GI (2005) Mater Sci Eng A 410–411:230

    Google Scholar 

  27. Rosochowski A, Olejnik L (2002) J Mater Proc Technol 125–126:309

    Article  Google Scholar 

  28. Martin JL, Lo Piccolo B, Kruml T, Bonneville J (2002) Mater Sci Eng A 322:118

    Article  Google Scholar 

  29. Young RA (1993) Rietveld method. International Union of Crystallography. Oxford University Press, New York, 299 p

  30. Pecharsky VK, Zavalij PY (2003) Fundamentals of powder diffraction and structural characterization of materials. Kluwer Academic Publishers, New York

    Google Scholar 

  31. Sauvage X, Murashkin MYu, Valiev RZ (2010) Kovove Mater 48:1

    Google Scholar 

  32. Roven HJ, Liu M, Werenskiold JC (2008) Mater Sci Eng A 483–484:54

    Google Scholar 

  33. Vissers R, Van Huis MA, Jansen J, Zandbergen HW, Marioara CD, Andersen SJ (2007) Acta Mater 55:3815

    Article  CAS  Google Scholar 

  34. Murayama M, Hono K, Saga M, Kikuchi M (1998) Mater Sci Eng A 250:127

    Article  Google Scholar 

  35. Murayama M, Hono K (1999) Acta Mater 47:1537

    Article  CAS  Google Scholar 

  36. Edwards GA, Stiller K, Dunlop GL, Couper M (1998) Acta Mater 46:3893

    Article  CAS  Google Scholar 

  37. Matsuda K, Naoi T, Fujii K, Uetani Y, Sato T, Kamio A, Ikeno S (1999) Mater Sci Eng A 262:232

    Article  Google Scholar 

  38. Kashyap BP, Hodgson PD, Estrin Y, Timokhina I, Barnett MR, Sabirov I (2009) Metall Mater Trans A 40:3294

    Article  Google Scholar 

  39. Boehner A, Maier V, Durst K, Hoeppel HW, Goeken M (2011) Adv Eng Mater 13:251

    Article  CAS  Google Scholar 

  40. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317

    Article  CAS  Google Scholar 

  41. Oh-ishi K, Horita Z, Furukawa M, Nemoto M, Langdon TG (1998) Metall Mater Trans A 29:2011

    Article  Google Scholar 

  42. Garcia-Infanta JM, Swaminathan S, Cepeda-Jimenez CM, McNelley TR, Ruano OA, Carreno F (2009) J Alloys Compd 478:139

    Article  CAS  Google Scholar 

  43. Murayama M, Horita Z, Hono K (2001) Acta Mater 49:21

    Article  CAS  Google Scholar 

  44. Gutierrez-Urrutia I, Munoz-Morris MA, Morris DG (2006) J Mater Res 21:329

    Article  CAS  Google Scholar 

  45. Gubicza J, Schiller I, Chinh NQ, Illy J, Horita Z, Langdon TG (2007) Mater Sci Eng A 460–461:77

    Google Scholar 

  46. Genevois C, Fabregue D, Deschamps A, Poole WJ (2006) Mater Sci Eng A 441:39

    Article  Google Scholar 

  47. De PS, Su JQ, Mishra RS (2011) Scr Mater 64:57

    Article  CAS  Google Scholar 

  48. Takata N, Lee SH, Tsuji N (2009) Mater Lett 63:1757

    Article  CAS  Google Scholar 

  49. Zhang Y, Li YS, Tao NR, Lu K (2007) Appl Phys Lett 91:211901

    Article  Google Scholar 

  50. Lu L, Shen Y, Chen X, Qian L, Lu K (2004) Science 304:422

    Article  CAS  Google Scholar 

  51. Salazar-Guapuriche MA, Zhao YY, Pitman A, Greene A (2006) Mater Sci Forum 519–521:858

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge gratefully the Russian Ministry for Education and Science for financial support of this study through the Federal Targeted Program (Contract No. 14.B37.21.1953 by 14 November 2012). IS acknowledges gratefully Spanish Ministry of Economy and Competitiveness for financial funding through the Ramon y Cajal Fellowship. EVB acknowledges gratefully the RFBR for financial funding (Contract No. 12-02-31766).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Z. Valiev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murashkin, M.Y., Sabirov, I., Kazykhanov, V.U. et al. Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC. J Mater Sci 48, 4501–4509 (2013). https://doi.org/10.1007/s10853-013-7279-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7279-8

Keywords

Navigation