Skip to main content
Log in

Microstructure and mechanical properties of high purity nanostructured titanium processed by high pressure torsion at temperatures 300 and 77 K

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Several structural states of nanostructured high purity Ti with average grain size down to 100 nm were achieved by high pressure torsion (HPT) at temperatures 300 and 77 K. As a result of HPT processing, changes of crystallographic texture, of grain and crystallite size, and of the dislocation density have been measured and analyzed. Mechanical properties of the nanostructured Ti were studied by uniaxial compression at temperatures 300, 77, and 4.2 K. The texture components indicate simple shear deformation arising from HPT. With subsequent compression, the yield strength appears to be governed by the grain size rather than by crystallite size, dislocation density, and/or impurity content. Considerable changes of texture were observed after low temperature compressive deformation indicating that twinning markedly contributes to plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zehetbauer MJ, Zhu YT (eds) (2009) Bulk nanostructured materials. VCH-Wiley, Weinheim

    Google Scholar 

  2. Valiev RZ, Aleksandrov IV (2007) Bulk nanostructured metallic materials: production, structure and properties. Akademkniga, Moskow (in Russian)

    Google Scholar 

  3. Zwicker U (1974) Titan und Titanlegierungen. Springer-Verlag, Berlin

    Google Scholar 

  4. Kovaleva VN, Moskalenko VA, Natsik VD (1994) Philos Mag A70:423–438

    Google Scholar 

  5. Moskalenko VA, Natsik VD, Kovaleva VN (2005) Low Temp Phys 31:907–914

    Article  CAS  Google Scholar 

  6. Edalati K, Matsubara E, Horita Z (2009) Metall Mater Trans A 40:2079–2086

    Article  Google Scholar 

  7. Podolskiy AV, Tabachnikova ED, Bonarski B, Setman D, Mangler C, Schafler E, Zehetbauer MJ (2013) Mech Mater, submitted for publication

  8. Van Houtte P (1991) Textures Microstruct 13:199–212

    Article  Google Scholar 

  9. Pawlik K, Ozga P (1999) LaboTex: the texture analysis software, Gittinger Arbeiten zur Geologie und Paläontologie, SB4

  10. Ribarik G, Ungar T, Gubicza J (2001) J Appl Crystallogr 34:669–676

    Article  CAS  Google Scholar 

  11. Ribarik G, Gubicza J, Ungar T (2004) J Mater Sci Eng A 387–389:343–347

    Article  Google Scholar 

  12. Kerber MB, Zehetbauer MJ, Schafler E, Spieckermann FC, Bernstorff S, Ungar T (2011) JOM 63:61–70

    Article  Google Scholar 

  13. Máthis K, Nyilas K, Axt A, Dragomir-Cernatescu I, Ungár T, Lukáč P (2004) Acta Mater 52:2889–2894

    Article  Google Scholar 

  14. Dragomir IC, Ungár T (2002) J Appl Cryst 35:556–564

    Article  CAS  Google Scholar 

  15. Wang YM, Ma E (2004) Acta Mater 52:1699–1709

    Article  CAS  Google Scholar 

  16. Moskalenko VA, Smirnov AR, Moskalenko AV (2009) Low Temp Phys 35:1160–1164

    Article  Google Scholar 

  17. Beausir B, Toth LS, Neale KW (2007) Acta Mater 55:2695–2705

    Article  CAS  Google Scholar 

  18. Alexandrov IV, Dubravina AA, Kilmametov AR, Kazykhanov VU, Valiev RZ (2003) Met Mater Int 9:151–156

    Article  CAS  Google Scholar 

  19. Churchman AT (1954) Proc R Soc Lond A226:216–226

    Google Scholar 

  20. Schafler E (2011) Scr Mater 64:13–32

    Article  Google Scholar 

  21. Schafler E (2010) Scr Mater 62:423–426

    Article  CAS  Google Scholar 

  22. Reed-Hill RE (1964) In: Reed-Hill RE, Hirth JP, Rogers HC (eds) Deformation twinning vol 25. TMS, Warrendale, pp 295–320

    Google Scholar 

  23. Valiev RZ, Sergueeva AV, Mukherjee AK (2003) Scr Mater 49:669–674

    Article  CAS  Google Scholar 

  24. Islamgaliev RK, Kazyhanov VU, Shestakova LO, Sharafutdinov AV, Valiev RZ (2008) Mater Sci Eng A 493:190–194

    Article  Google Scholar 

  25. Rusakova AV, Lubenets SV, Fomenko LS, Moskalenko VA (2012) Low Temp Phys 38:980–988

    Article  CAS  Google Scholar 

  26. Tabachnikova ED, Bengus VZ, Podolskiy AV, Smirnov SN, Gunderov DV, Valiev RZ (2006) Mater Sci Forum 503–504:633–638

    Article  Google Scholar 

  27. Tabachnikova ED, Podolskiy AV, Smirnov SN, Psaruk IA, Bengus VZ, Li H, Li L, Chu H, Liao PK (2012) Low Temp Phys 38:239–247

    Article  CAS  Google Scholar 

  28. Song SG, Gray GT III (1995) Acta Metall Mater 43:2339–2350

    Article  CAS  Google Scholar 

  29. Podolskiy AV, Smirnov SN, Tabachnikova ED, Bengus VZ, Velikodny AN, Tikhonovsky MA, Bonarski B, Mangler C, Zehetbauer MJ (2011) Low Temp Phys 37:609–617

    Article  CAS  Google Scholar 

  30. Dragomir IC, Ungar T (2002) J Appl Cryst 35:556–564

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support within the Scientific–Technical Cooperation Project Austria–Ukraine UA 16/2011 (M/185-2012) and some support by the Austrian Science Fund FWF within project S 10403. The authors are grateful to V.A. Moskalenko for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Podolskiy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podolskiy, A.V., Mangler, C., Schafler, E. et al. Microstructure and mechanical properties of high purity nanostructured titanium processed by high pressure torsion at temperatures 300 and 77 K. J Mater Sci 48, 4689–4697 (2013). https://doi.org/10.1007/s10853-013-7276-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7276-y

Keywords

Navigation