Advertisement

Journal of Materials Science

, Volume 48, Issue 14, pp 4899–4907 | Cite as

Theoretical prediction of structural parameters, band-gap energies, and mixing enthalpies of Sc1−x In x As alloys

  • William López-Pérez
  • Nicolás Simon-Olivera
  • Rafael González-Hernández
Article

Abstract

Structural parameters, band-gap energies, and mixing enthalpies of Sc1−x In x As alloys were calculated using the full-potential linearized–augmented plane wave method. These calculations are based on density functional theory, within local density approximation, and generalized gradient approximation for the exchange and correlation potential. Given that the binary precursor compounds ScAs and InAs crystallize in rock-salt and zinc-blende, respectively, we made calculations for the ternary alloys in these two phases. The effect of composition x on structural parameters, band-gap energies, and mixing enthalpies was analyzed for x = 0, 0.25, 0.5, 0.75, 1. The effect of atomic composition on lattice constant, bulk modulus, and band-gap energy shows nonlinear dependence on concentration x. Deviations of the lattice constant from Vegard’s law and deviations of the bulk modulus and gap-energy from linear concentration dependence were found. We have found a metallic character for rock-salt Sc1−x In x As alloys, while the zinc-blende Sc1−x In x As alloys are semiconductors. Our results show that the band-gap undergoes a direct (\(X \rightarrow X\))-to-direct (\(\Upgamma\rightarrow \Upgamma\)) transition at a given indium composition. The physical origin of the band-gap bowing in zinc-blende Sc1−x In x As alloys was investigated. To study the thermodynamic stability of Sc1−x In x As alloys, a regular-solution model was used. This resulted in lower mixing enthalpies for zinc-blende Sc1−x In x As alloys.

Keywords

Bulk Modulus Ternary Alloy Equilibrium Lattice Constant Indium Composition Bowing Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported by DIDI-Universidad del Norte. The calculations reported in this paper were performed using the computing facilities of the HIPERLAB-cluster at the Universidad del Norte. The authors thank Carlos Abuchaibe Ferreira for useful comments.

References

  1. 1.
    Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) J Appl Phys 89:5815CrossRefGoogle Scholar
  2. 2.
    Adachi S (2009) Properties of semiconductor alloys: group-IV, IIIV and II–VI semiconductors (Wiley series in materials for electronic and optoelectronic applications}. Wiley, West SussexGoogle Scholar
  3. 3.
    Milnes AG, Polyakov AY (1993) Mater Sci Eng B 18:237CrossRefGoogle Scholar
  4. 4.
    Chow DH, Dunlap HL, Williamson W, Enquist S, Gilbert BK, Subramaniam S, Lei P-M, Bernstein GH (1996) IEEE Electron Device Lett 17:69CrossRefGoogle Scholar
  5. 5.
    Meyer JR et al (1998) IEE Proc 145:275CrossRefGoogle Scholar
  6. 6.
    Slavin JWJ, Zemlyanov D, Ivanisevic A (2009) Surf Sci 603:907CrossRefGoogle Scholar
  7. 7.
    Boehm G, Grau M, Dier O, Windhorn K, Roenneberg E, Rosskopf J, Shau R, Meyer R, Ortsiefer M, Amann M-C (2007) J Cryst Growth 301302:941CrossRefGoogle Scholar
  8. 8.
    Yim WM, Stofko EJ, Smith RT (1972) J Appl Phys 43:254CrossRefGoogle Scholar
  9. 9.
    Iga K, Kinoshita S (1996) Process technology for semiconductor lasers. Springer-Verlag, BerlinCrossRefGoogle Scholar
  10. 10.
    Quillec M (1996) Materials for optoelectronics. Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  11. 11.
    Mishra UK, Singh J (2008) Semiconductor device physics and design. Springer, DordrechtGoogle Scholar
  12. 12.
    Su Y-K (1985) J Mater Sci Lett 4:1513CrossRefGoogle Scholar
  13. 13.
    Su Y-K, Wang J-H, Hung MP (1989) J Mater Sci 24:899CrossRefGoogle Scholar
  14. 14.
    Kunets VP, Morgan TA, Mazur YI, Dorogan VG, Lytvyn PM, Ware ME, Guzun D, Shultz JL, Salamo GJ (2008) J Appl Phys 104:103709CrossRefGoogle Scholar
  15. 15.
    Wu MY, Lei PH, Tsai CL, Yang CD, Huang YH, Ho WJ, Wu MC (2004) J Vac Sci Technol B 22:961CrossRefGoogle Scholar
  16. 16.
    Murphy ST, Chroneos A, Jiang C, Schwingenschlgl U, Grimes RW (2010) Phys Rev B 82:073201CrossRefGoogle Scholar
  17. 17.
    Ameri M, Boufadi F, Touia A, Faudil M, Hachemane D, Boudia K, Slamani A, Aze-Eddine A (2012) Mater Sci Appl 3:674Google Scholar
  18. 18.
    Yakimova R (1985) J Less Common Met 110:243CrossRefGoogle Scholar
  19. 19.
    Lilov SK, Yakimova RT (1983) Crystal Res Technol 18(11):1385CrossRefGoogle Scholar
  20. 20.
    Zunger A, Wei SH, Ferreira LG, Bernard JE (1990) Phys Rev Lett 65:353CrossRefGoogle Scholar
  21. 21.
    Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k an augmented plane wave plus local orbital program for calculating crystal properties. Vienna University of Technology, ViennaGoogle Scholar
  22. 22.
    Hohenberg P, Kohn W (1964) Phys Rev 136:864CrossRefGoogle Scholar
  23. 23.
    Kohn W, Sham LJ (1965) Phys Rev 140:1163CrossRefGoogle Scholar
  24. 24.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244CrossRefGoogle Scholar
  25. 25.
    Perdew JP, Burke K, Emzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  26. 26.
    Engel E, Vosko SH (1993) Phys Rev B 47:13164CrossRefGoogle Scholar
  27. 27.
    Murnaghan FD (1944) Proc Natl Acad Sci USA 30(9):244CrossRefGoogle Scholar
  28. 28.
    Maachou A, Amrani B, Driz M (2007) Phys B 388:384CrossRefGoogle Scholar
  29. 29.
    Ahmed R, Hashemifar SJ, Akbarzadeh H, Ahmed M, Aleem F (2007) Comput Mater Sci 39:580CrossRefGoogle Scholar
  30. 30.
    Vegard L (1921) Z Phys 5:17CrossRefGoogle Scholar
  31. 31.
    Jobst B, Hommel D, Lunz U, Gerhard T, Landwehr G (1996) Appl Phys Lett 69:97CrossRefGoogle Scholar
  32. 32.
    Denton AR, Ashcroft NW (1991) Phys Rev A 43:3161CrossRefGoogle Scholar
  33. 33.
    Dufek P, Blaha P, Schwarz K (1994) Phys Rev B 50:7279CrossRefGoogle Scholar
  34. 34.
    Bernard JE, Zunger A (1987) Phys Rev B 36:3199CrossRefGoogle Scholar
  35. 35.
    Sargent W (1980) Table of periodic properties of the elements. Sargent-Welch Scientific, SkokieGoogle Scholar
  36. 36.
    Swalin RA (1961) Thermodynamics of solids. Wiley, New YorkGoogle Scholar
  37. 37.
    Ouendadji S, Ghemid S, Bouarissa N, Meradji H, Hassan FEH (2011) J Mater Sci 46:3855CrossRefGoogle Scholar
  38. 38.
    Sluiter MHF, Kawazoe Y (2002) Europhys Lett 57(4):526CrossRefGoogle Scholar
  39. 39.
    Hassan FEH, Breidi A, Ghemid S, Amrani B, Meradji H, Pages O (2010) J Alloys Compd 499:80CrossRefGoogle Scholar
  40. 40.
    Liu YQ, Ma DJ, Du Y (2010) J Alloys Compd 491:63CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • William López-Pérez
    • 1
  • Nicolás Simon-Olivera
    • 1
  • Rafael González-Hernández
    • 1
  1. 1.Grupo de investigacin en Física Aplicada, Departamento de FísicaUniversidad del NorteBarranquillaColombia

Personalised recommendations