Skip to main content
Log in

Zinc octacarboxylic phthalocyanine/lutein dyads co-adsorbed nanocrystalline TiO2 electrode: enhancement in photovoltaic performance of dye-sensitized solar cells

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel zinc phthalocyanine containing eight carboxyl groups was synthesized and utilized as a co-adsorbent with lutein for dye-sensitized solar cells enhance the photoelectric conversion efficiency. The effects of various phthalocyanine/lutein mole ratios on the performances of the fabricated solar cells were investigated. The results showed that zinc octacarboxylic phthalocyanine aggregation decreased with the increasing lutein/phthalocyanine mole ratios and zinc octacarboxylic phthalocyanine fluorescence was strongly quenched due to energy transfer from the phthalocyanine to the excited lutein. The photoelectric conversion efficiency reached its maximum when zinc octacarboxylic phthalocyanine/lutein mole ratio was 4:1. Moreover, the charge-transfer resistances and electron lifetimes at the TiO2/dye/electrolyte interface also showed great dependency on the phthalocyanine/lutein mole ratios by electrochemical impedance spectroscopy. The density-functional theory calculation of zinc phthalocyanine suggests that the electronic cloud density distribution move from the phthalocyanine ring framework toward the anchoring carboxylic group and further to the conduction band of TiO2, which results in efficient electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cid JJ, Yum JH, Jang S-R et al (2007) Angew Chem 119:8510

    Article  Google Scholar 

  2. Imahori H, Umeyama T, Ito S (2009) Acc Chem Res 42:1809

    Article  CAS  Google Scholar 

  3. Kuster S, Sauvage F, Nazeeruddin MK, Grätzel M, Nüesch FA, Geiger T (2010) Dyes Pigments 87:30

    Article  CAS  Google Scholar 

  4. Roy MS, Balraju P, Deol YS, Sharma SK, Sharma GD (2008) J Mater Sci 43:5551. doi:10.1007/s10853-008-2822-8

    Article  CAS  Google Scholar 

  5. Zhang W, Tao F, Meng KG et al (2011) J Mater Sci 46:5363. doi:10.1007/s10853-011-5474-z

    Article  CAS  Google Scholar 

  6. Garcia-Iglesias M, Cid JJ, Yum JH et al (2011) Energy Environ Sci 4:189

    Article  CAS  Google Scholar 

  7. Luo X, Xu L, Xu B, Li F (2011) Appl Surf Sci 257:6908

    Article  CAS  Google Scholar 

  8. Mori S, Nagata M, Nakahata Y et al (2010) J Am Chem Soc 132:4054

    Article  CAS  Google Scholar 

  9. Ragoussi ME, Cid JJ, Yum JH et al (2012) Angew Chem Int Ed 51:4375

    Article  CAS  Google Scholar 

  10. Palomares E, Martínez-Díaz MV, Haque SA, Torres T, Durrant JR (2004) Chem Commun 10:2112

    Article  Google Scholar 

  11. Nazeeruddin MK, Humphry-Baker R, Grätzel M, Murrer BA (1998) Chem Commun 6:719

    Article  Google Scholar 

  12. Sakamoto K, Ohno E (1997) Dyes Pigments 35:375

    Article  CAS  Google Scholar 

  13. Amao Y, Komori T (2003) Langmuir 19:8872

    Article  CAS  Google Scholar 

  14. He J, Hagfeldt A, Lindquist SE et al (2001) Langmuir 17:2743

    Article  CAS  Google Scholar 

  15. Nazeeruddin MK, Humphry-Baker R, Grätzel M et al (1999) J Porphyr Phthalocya 3:230

    Article  CAS  Google Scholar 

  16. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595

    Article  CAS  Google Scholar 

  17. Martinez-Diaz MV, de la Torre G, Torres T (2010) Chem Commun 46:7090

    Article  CAS  Google Scholar 

  18. Wong KK, Ng A, Chen XY et al (2012) ACS Appl Mater Interfaces 4:1254

    Article  CAS  Google Scholar 

  19. Yum JH, Jang SR, Humphry-Baker R et al (2008) Langmuir 24:5636

    Article  CAS  Google Scholar 

  20. Cherepy NJ, Smestad GP, Grätzel M, Zhang JZ (1997) J Phys Chem B 101:9342

    Article  CAS  Google Scholar 

  21. Guo M, He R, Dai Y et al (2012) J Phys Chem C 116:9166

    Article  CAS  Google Scholar 

  22. McHale JL (2012) J Phys Chem Lett 3:587

    Article  CAS  Google Scholar 

  23. Qin P, Yang X, Chen R et al (2007) J Phys Chem C 111:1853

    Article  CAS  Google Scholar 

  24. Wang XF, Matsuda A, Koyama Y et al (2006) Chem Phys Lett 423:470

    Article  CAS  Google Scholar 

  25. Liu BQ, Zhao XP, Luo W (2008) Dyes Pigments 76:327

    Article  CAS  Google Scholar 

  26. Fang Y, Chen D (2010) Mater Res Bull 45:1728

    Article  CAS  Google Scholar 

  27. Claessens CG, Hahn U, Torres T (2008) Chem Rec 8:75

    Article  CAS  Google Scholar 

  28. He J, Benkö G, Korodi F et al (2002) J Am Chem Soc 124:4922

    Article  CAS  Google Scholar 

  29. Wasielewski MR (2006) J Org Chem 71:5051

    Article  CAS  Google Scholar 

  30. Wang XF, Wang L, Tamai N, Kitao O, Tamiaki H, Sasaki SI (2011) J Phys Chem C 115:24394

    Article  CAS  Google Scholar 

  31. Alarcón H, Boschloo G, Mendoza P, Solis JL, Hagfeldt A (2005) J Phys Chem B 109:18483

    Article  Google Scholar 

  32. Mikroyannidis JA, Suresh P, Roy MS, Sharma GD (2011) Electrochim Acta 56:5616

    Article  CAS  Google Scholar 

  33. Kuang D, Ito S, Wenger B et al (2006) J Am Chem Soc 128:4146

    Article  CAS  Google Scholar 

  34. Wang SB, Guo J, Deng Y, Zhao J, Zhang L (2012) J Mater Sci 47:1843. doi:10.1007/s10853-011-5971-0

    Article  CAS  Google Scholar 

  35. Baheti A, Singh P, Lee CP, Thomas KRJ, Ho KC (2011) J Org Chem 76:4910

    Article  CAS  Google Scholar 

  36. Jang YH, Xin X, Byun M, Jang YJ, Lin Z, Kim DH (2011) Nano Lett 12:479

    Article  Google Scholar 

  37. Kuang D, Walter P, Nüesch F et al (2007) Langmuir 23:10906

    Article  CAS  Google Scholar 

  38. Lim I, Yoon SJ, Lee W et al (2011) ACS Appl Mater Interfaces 4:838

    Article  Google Scholar 

  39. Lin LY, Nien PC, Lee CP et al (2010) J Phys Chem C 114:21808

    Article  CAS  Google Scholar 

  40. Phadke S, Du Pasquier A, Birnie DP (2011) J Phys Chem C 115:18342

    Article  CAS  Google Scholar 

  41. Agarwala S, Peh CKN, Ho GW (2011) ACS Appl Mater Interfaces 3:2383

    Article  CAS  Google Scholar 

  42. Shen H, Lin H, Liu Y et al (2011) Electrochim Acta 56:2092

    Article  CAS  Google Scholar 

  43. Wang ZS, Cui Y, Dan-oh Y, Kasada C, Shinpo A, Hara K (2007) J Phys Chem C 111:7224

    Article  CAS  Google Scholar 

  44. Guo W, Shen Y, Wu L, Gao Y, Ma T (2011) J Phys Chem C 115:21494

    Article  CAS  Google Scholar 

  45. Yu QY, Liao JY, Zhou SM et al (2011) J Phys Chem C 115:22002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants from the Program of Introducing Talents of Discipline to Universities (No. 111-2-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, L., Ding, Z.L. & Chen, D.J. Zinc octacarboxylic phthalocyanine/lutein dyads co-adsorbed nanocrystalline TiO2 electrode: enhancement in photovoltaic performance of dye-sensitized solar cells. J Mater Sci 48, 4883–4891 (2013). https://doi.org/10.1007/s10853-013-7268-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7268-y

Keywords

Navigation