Skip to main content
Log in

Phase transformations in Al–Mg–Zn alloys during high pressure torsion and subsequent heating

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structure, phase composition, and their thermal evolution were studied in case of ternary Al–Zn–Mg alloys before and after high-pressure torsion (HPT) in Bridgman anvils. The as-cast non-deformed alloys contained the fine particles of Mg32(Al,Zn)49 (τ phase), MgZn2 (η phase), AlMg4Zn11 (η′ phase), and Mg7Zn3 phases embedded in the matrix of Al-based solid solution. During heating in differential scanning calorimeter (DSC), all these phases dissolved around 148 °C. The τ nanoparticles coherent with (Al) matrix-formed instead around 222 °C. HPT of the as-cast alloys strongly refined the grains of (Al) solid solution from 500 μm to 120–150 nm. The particles of τ, η, η′, and Mg7Zn3 phases fully dissolved in the (Al) matrix. During the following DSC-heating, particles of η phase appeared and grew. Their amount became maximal around 166 °C. The growth of η phase in the fine-grained HPT-treated alloys instead of τ phase in the coarse-grained ones is explained by the shift of the (Al) + η/(Al) + η + τ/(Al) + τ lines in the Al–Zn–Mg ternary phase diagram due to the grain boundary (GB) adsorption. At 166 °C the η phase formed the continuous flat layers in numerous (Al)/(Al) GBs. This corresponds to the complete GB wetting by the η phase. Other (Al)/(Al) GBs contain separated lenticular η particles (incomplete GB wetting). Increasing the temperature from 166 to 320 °C led to the disappearance of the completely wetted (Al)/(Al) GBs. In other words, the transition from complete to the incomplete wetting of (Al)/(Al) GBs by the η phase proceeds between 166 °C and 320 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) Acta Mater 44:4619

    Article  CAS  Google Scholar 

  2. Roven HJ, Liu M, Murashkin MY, Valiev RZ, Kilmametov AR, Ungár T, Balogh L (2008) Mater Sci Forum 604:179

    Article  Google Scholar 

  3. Cepeda-Jimenez CM, Garcia-Infanta JM, Rauch EF, Blandin JJ, Ruano OA, Carreno F (2012) Metal Mater Trans A 43:4224

    Article  CAS  Google Scholar 

  4. Garcia-Infanta JM, Zhilyaev AP, Sharafutdinov A, Ruano OA, Carreno F (2009) J Alloys Comp 473:163

    Google Scholar 

  5. Krishna KG, Sivaprasad K, Venkateswarlu K, Kumar KCH (2012) Mater Sci Eng A 535:129

    Google Scholar 

  6. Liu FC, Ma ZY (2008) Scr Mater 58:667

    Article  CAS  Google Scholar 

  7. Sha G, Wang YB, Liao XZ, Duan ZC, Ringer SP, Langdon TG (2009) Acta Mater 57:3123

    Article  CAS  Google Scholar 

  8. Straumal B, Valiev R, Kogtenkova O, Zieba P, Czeppe T, Bielanska E, Faryna M (2008) Acta Mater 56:6123

    Article  CAS  Google Scholar 

  9. Gao N, Starink MJ, Langdon TG (2009) Mater Sci Technol 25:687

    Article  CAS  Google Scholar 

  10. Ungar T, Borbely A (1996) Appl Phys Lett 69:3173

    Article  CAS  Google Scholar 

  11. Dean JA (1995) The analytical chemistry handbook. McGraw Hill, New York, p 151 (Standards ASTM D 3417, ASTM D 3418, ASTM E 1356, ISO 11357)

  12. Kogtenkova OA, Protasova SG, Mazilkin AA, Straumal BB, Zięba P, Czeppe T, Baretzky B (2012) J Mater Sci 47:8367. doi:10.1007/s10853-012-6786-3

    Article  CAS  Google Scholar 

  13. Gao N, Starink MJ, Furukawa M, Horita Z, Xu C, Langdon TG (2006) Mater Sci Forum 503:275

    Article  Google Scholar 

  14. Straumal BB, Gust W (1996) Mater Sci Forum 207:59

    Article  Google Scholar 

  15. Straumal BB, Gust W, Watanabe T (1999) Mater Sci Forum 294:411

    Article  Google Scholar 

  16. Villars P, Prince A, Okamoto H (eds) (1995) Handbook of ternary alloy phase diagrams, vol 10. ASM International, Metals Park

    Google Scholar 

  17. Lu J, Yin JG, He Y, Ding BF (2005) Rare Metal Mater Eng 34:742

    CAS  Google Scholar 

  18. Malek P, Cieslar M, Islamgaliev RK (2004) J Alloys Comp 378:237

    Article  CAS  Google Scholar 

  19. Molodov DA, Straumal BB, Shvindlerman LS (1984) Scr Metall 18:207

    Article  CAS  Google Scholar 

  20. Straumal BB, Gornakova AS, Mazilkin AA, Fabrichnaya OB, Kriegel MJ, Baretzky B, Jiang JZ, Dobatkin SV (2012) Mater Lett 81:225

    Article  CAS  Google Scholar 

  21. Straumal BB, Mazilkin AA, Protasova SG, Myatiev AA, Straumal PB, Baretzky B (2008) Acta Mater 56:6246

    Article  CAS  Google Scholar 

  22. Straumal BB, Dobatkin SV, Rodin AO, Protasova SG, Mazilkin AA, Goll D, Baretzky B (2011) Adv Eng Mater 13:463

    Article  CAS  Google Scholar 

  23. Krishna KG, Sivaprasad K, Venkateswarlu K, Kumar KCH (2012) Mater Sci Eng, A 535:129

    Article  Google Scholar 

  24. Sha G, Ringer SP, Duan ZC, Langdon TG (2009) Int J Mater Res 100:1674

    Article  CAS  Google Scholar 

  25. German RM, Suri P, Park SJ (2009) J Mater Sci 44:1. doi:10.1007/s10853-008-3008-0

    Article  CAS  Google Scholar 

  26. Empl D, Felberbaum L, Laporte V, Chatain D, Mortensen A (2009) Acta Mater 57:2527

    Article  CAS  Google Scholar 

  27. Cahn JW (1977) J Chem Phys 66:3667

    Article  CAS  Google Scholar 

  28. Ebner C, Saam WF (1977) Phys Rev Lett 38:1486

    Article  CAS  Google Scholar 

  29. López GA, Mittemeijer EJ, Straumal BB (2004) Acta Mater 52:4537

    Article  Google Scholar 

  30. Straumal BB, Klinger LM, Shvindlerman LS (1984) Acta Metall 32:1355

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the Russian Foundation for Basic Research (contracts 11-03-01198 and 11-08-90439), ERA.Net RUS program (Grant STProjects-219 NanoPhase), program of bilateral cooperation between Russian and Polish Academies of sciences, the grant of President of Russian Federation for young scientists (MK-3748.2011.8) and Polish National Science Centre (Grant UMO-2011/01/M/ST8/07822) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Straumal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kogtenkova, O.A., Mazilkin, A.A., Straumal, B.B. et al. Phase transformations in Al–Mg–Zn alloys during high pressure torsion and subsequent heating. J Mater Sci 48, 4758–4765 (2013). https://doi.org/10.1007/s10853-013-7266-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7266-0

Keywords

Navigation