Skip to main content
Log in

Compatibility of plasma-deposited linalyl acetate thin films with organic electronic device fabrication techniques

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Contact angle and temperature-dependent variable angle spectroscopic ellipsometry measurements have been performed on plasma-deposited linalyl acetate thin films in order to provide insight into the compatibility of the material with current organic electronic fabrication techniques. XPS data on several substrates confirmed that the chemical properties of the thin films were substrate independent. The plasma-deposited layers were found to be insoluble in many solvents commonly used in the deposition of organic semiconducting layers, including chloroform and dichlorobenzene, and the wetting envelope for the surfaces presented. Thermal degradation was found to begin at ~200 °C, and up until this temperature the material’s thickness, refractive index and transparency in the visible region were constant. The exhibited properties show plasma-deposited linalyl acetate thin films to be compatible with state of the art organic electronic processing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Seol YG, Lee JG, Lee NE (2007) Org Electron 8(5):513

    Article  CAS  Google Scholar 

  2. Logothetidis S (2008) Mater Sci Eng B 152(1–3):96

    Article  CAS  Google Scholar 

  3. Choi M-C, Kim Y, Ha C-S (2008) Prog Polym Sci 33(6):581

    Article  CAS  Google Scholar 

  4. Bao Z, Locklin J (2007) Organic field effect transistors. CRC Press, Boca Raton

    Book  Google Scholar 

  5. Barra M, Girolamo FVD, Chiarella F, Salluzzo M, Chen Z, Facchetti A, Anderson L, Cassinese A (2010) J Phys Chem C 114:20387. doi:10.1021/jp103555x

    Article  CAS  Google Scholar 

  6. Centore R, Ricciotti L, Carella A, Roviello A, Causà M, Barra M, Ciccullo F, Cassinese A (2012) Org Electron 13(10):2083. doi:10.1016/j.orgel.2012.06.002

    Article  CAS  Google Scholar 

  7. Facchetti A, Yoon MH, Marks TJ (2005) Adv Mater 17(14):1705. doi:10.1002/adma.200500517

    Article  CAS  Google Scholar 

  8. Fritz SE, Kelley TW, Frisbie CD (2005) J Phys Chem B 109(21):10574. doi:10.1021/jp044318f

    Article  CAS  Google Scholar 

  9. Song K, Kim D, Li X-S, Jun T, Jeong Y, Moon J (2009) J Mater Chem 19:8881

    Article  CAS  Google Scholar 

  10. Yoo B, Jones BA, Basu D, Fine D, Jung T, Mohapatra S, Facchetti A, Dimmler K, Wasielewski MR, Marks TJ, Dodabalapur A (2007) Adv Mater 19(22):4028. doi:10.1002/adma.200700064

    Article  CAS  Google Scholar 

  11. Li Y, Liu C, Xu Y, Minari T, Darmawan P, Tsukagoshi K (2012) Org Electron 13(5):815. doi:10.1016/j.orgel.2012.01.021

    Article  CAS  Google Scholar 

  12. Lu Y, Wang Y, Feng Z, Ning Y, Liu X, Lü Y, Hou Y (2012) Synth Met 162(23):2039. doi:10.1016/j.synthmet.2012.10.012

    Article  CAS  Google Scholar 

  13. Campoy-Quiles M, Schmidt M, Nassyrov D, Peña O, Goñi AR, Alonso MI, Garriga M (2011) Thin Solid Films 519(9):2678. doi:10.1016/j.tsf.2010.12.228

    Article  CAS  Google Scholar 

  14. Anderson LJ, Jacob MV (2010) Appl Surf Sci 256(10):3293

    Article  CAS  Google Scholar 

  15. Anderson LJ, Jacob MV (2012) Mater Sci Eng B 177:311

    Article  CAS  Google Scholar 

  16. Anderson LJ, Jacob MV (2013) Thin Solid Films. doi:10.1016/j.tsf.2013.02.015

  17. Bae IS, Jung CK, Cho SJ, Song YH, Boo JH (2008) J Alloy Compd 449(1–2):393

    Article  CAS  Google Scholar 

  18. Tougaard S (1998) Surf Interface Anal 26(4):249. doi:10.1002/(sici)1096-9918(199804)26:4<249:aid-sia368>3.0.co;2-a

    Article  CAS  Google Scholar 

  19. Fairley N (2009) Introduction to XPS and AES. Casa Software Ltd. http://www.casaxps.com/ebooks/XPS%20AES%20Book%20new%20margins%20rev%201.2%20for%20web.pdf. Accessed 22 Mar 2013

  20. Gengenbach TR, Griesser HJ (1998) J Polym Sci Part A 36(6):985. doi:10.1002/(sici)1099-0518(19980430)36:6<985:aid-pola14>3.0.co;2-h

    Article  CAS  Google Scholar 

  21. Easton CD, Jacob MV (2010) J Appl Polym Sci 115(1):404. doi:10.1002/app.30916

    Article  CAS  Google Scholar 

  22. Bazaka K (2011) Fabrication and characterization of plasma polymer thin films from monoterpene alcohols for applications in organic electronics and biotechnology. James Cook University, Townsville

    Google Scholar 

  23. Żenkiewicz M (2007) J Achiev Mater Manuf Eng 24(1):137

    Google Scholar 

  24. Deshmukh RR, Shetty AR (2008) J Appl Polym Sci 107(6):3707. doi:10.1002/app.27446

    Article  CAS  Google Scholar 

  25. Wu W, Giese RF Jr, van Oss CJ (1995) Langmuir 11(1):379. doi:10.1021/la00001a064

    Article  CAS  Google Scholar 

  26. Janssen D, De Palma R, Verlaak S, Heremans P, Dehaen W (2006) Thin Solid Films 515(4):1433. doi:10.1016/j.tsf.2006.04.006

    Article  CAS  Google Scholar 

  27. Cheng X, Caironi M, Noh Y–Y, Newman C, Wang J, Lee MJ, Banger K, Di Pietro R, Facchetti A, Sirringhaus H (2012) Org Electron 13(2):320. doi:10.1016/j.orgel.2011.12.001

    Article  CAS  Google Scholar 

  28. Azarova NA, Owen JW, McLellan CA, Grimminger MA, Chapman EK, Anthony JE, Jurchescu OD (2010) Org Electron 11(12):1960. doi:10.1016/j.orgel.2010.09.008

    Article  CAS  Google Scholar 

  29. Baeg K-J, Khim D, Kim J-H, Kang M, You I-K, Kim D-Y, Noh Y–Y (2011) Org Electron 12(4):634. doi:10.1016/j.orgel.2011.01.016

    Article  CAS  Google Scholar 

  30. Greiveldinger M, Shanahan MER (1999) Comptes Rendus de l’Académie des Sciences Series IIB Mechanics–Physics–Astronomy 327(2–3):275–283. doi:10.1016/s1287-4620(99)80067-2

  31. Van Oss CJ, Chaudhury MK, Good RJ (1988) Chem Rev 88(6):927. doi:10.1021/cr00088a006

    Article  Google Scholar 

  32. Easton CD, Jacob MV (2008) Polym Degrad Stab 94(4):597

    Article  Google Scholar 

  33. Bazaka K, Jacob MV (2010) Polym Degrad Stab 95(6):1123. doi:10.1016/j.polymdegradstab.2010.02.014

    Article  CAS  Google Scholar 

  34. Ahn T, Jung H, Suk HJ, Yi MH (2009) Synth Met 159(13):1277. doi:10.1016/j.synthmet.2009.02.023

    Article  CAS  Google Scholar 

  35. Pandey AK, Nunzi J-M (2012) Synth Met 162(23):2171. doi:10.1016/j.synthmet.2012.10.005

    Article  CAS  Google Scholar 

  36. Osipov KA, Pavlovskii VN, Lutsenko EV, Gurskii AL, Yablonskii GP, Hartmann S, Janssen A, Johannes HH, Caspary R, Kowalsky W, Meyer N, Gersdorff M, Heuken M, van Gemmern P, Zimmermann C, Jessen F, Kalisch H, Jansen RH (2007) Thin Solid Films 515(11):4834. doi:10.1016/j.tsf.2006.11.029

    Article  CAS  Google Scholar 

  37. Dinelli F, Murgia M, Biscarini F, De Leeuw DM (2004) Synth Met 146(3):373. doi:10.1016/j.synthmet.2004.08.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L. J. Anderson is grateful for financial support provided under the APA scholarship and GRS funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan V. Jacob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, L.J., Easton, C.D. & Jacob, M.V. Compatibility of plasma-deposited linalyl acetate thin films with organic electronic device fabrication techniques. J Mater Sci 48, 4851–4859 (2013). https://doi.org/10.1007/s10853-013-7244-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7244-6

Keywords

Navigation