Skip to main content
Log in

Comparison of two soft chemistry routes for the synthesis of mesoporous carbon/β-SiC nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We compare the influence of using either molecular or colloidal precursors on the synthesis of a ceramic material containing SiC and porous carbon. Remarkably, the temperature of synthesis for crystalline SiC is independent of the route chosen. The excess carbon in the initial mixture is the source of the excess porous carbon that binds to the crystalline domains of SiC in the final products. Interestingly, increasing the initial area of surface contact between carbon and silicon in the ceramic precursor results in different porosities in the ‘meso’ range. Simultaneous control of the size and the relative amounts of Si and C in the precursors allows control to be exerted over the nature and texture of the final powders. A simple and general mechanism is herein proposed to explain the evolution of the surface area as a function of the volume fraction of residual carbon in the synthesised ceramic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Elem. Anal. Found: C, 41.97; H, 6.82; N, 3.93; O, 35.3; Si, 8.90. Calc. for C42H85N3O23Si3: C, 46.52; H, 7.90; N, 3.88; O, 33.97; Si, 7.77.FTIR νmax/cm−1 3334, 2973, 2927, 2886, 1699, 1531, 1444, 1246, 1056, 949; 13C CP MAS NMR 75 MHz (δ, ppm) 156.9, 103.2, 90.2, 71.7, 58.1, 43.5, 23.2, 18.2, 7.7. 29Si CP MAS NMR 60 MHz (δ, ppm): −45.1 (T0), −52.8 (T1). Level of condensation <12 %.

  2. Elem. Anal. Found: C, 35.43; H, 5.43; N, 4.48; O, 37.7; Si, 10.01. Calc. for C48H80N6O37Si6: C, 38.39; H, 5.37; N, 5.60; O, 39.4; Si, 11.22. FTIR νmax/cm−1 3330, 2934, 2360, 2335, 1693, 1528, 1001, 13C CP MAS NMR 75 MHz (δ, ppm) 158.7, 104.9, 92.1, 73.5, 63.6, 44.4, 24.6, 11.2. 29Si CP MAS NMR 60 MHz (δ, ppm) : −57.4 (T2), −64.4 (T3). Level of condensation >95%. BET surface area <10 m2 g−1.

References

  1. Ledoux MJ, Pham-Huu C (2001) Cattech 5:226

    Article  CAS  Google Scholar 

  2. Okada K, Kato H, Nakajima K (1994) J Am Ceram Soc 77:1691

    Article  CAS  Google Scholar 

  3. Pham-Huu C, Bouchy C, Dintzer T, Ehret G, Estournes C, Ledoux MJ (1999) Appl Catal A 180:385

    Article  CAS  Google Scholar 

  4. Bao X, Nangrejo MR, Edirisinghe MJ (2000) J Mater Sci 35:4365. doi:10.1023/A:1004805023228

    Article  CAS  Google Scholar 

  5. Acheson EG (1893) U.S. Patent 492

  6. Gupta P, Wang W, Fan LS (2004) Ind Eng Chem Res 43:4732

    Article  CAS  Google Scholar 

  7. Corriu RJP (2000) Angew Chem Int Ed 39:1376

    Article  CAS  Google Scholar 

  8. Roduner E (2006) Chem Soc Rev 35:583

    Article  CAS  Google Scholar 

  9. Koga K, Ikeshoji T, Sugawara K (2004) Phys Rev Lett 92:115507

    Article  Google Scholar 

  10. Kevorkijan VM, Komac M, Kolar D (1992) J Mater Sci 27:2705. doi:10.1007/BF00540693

    Article  CAS  Google Scholar 

  11. Lin YJ, Tsang CP (2003) Ceram Int 29:69

    Article  CAS  Google Scholar 

  12. Ishihara S, Tanaka H, Nishimura T (2006) J Mater Res 21:1167. doi:10.1557/jmr.2006.0138

    Article  CAS  Google Scholar 

  13. Martin HP, Ecke R, Muller E (1998) J Eur Ceram Soc 18:1737

    Article  CAS  Google Scholar 

  14. Martin HP, Muller E, Knoll Y, Strienitz R, Schuster G (1995) J Mater Sci Lett 14:620

    Article  CAS  Google Scholar 

  15. Julbe A, Larbot A, Guizard C, Cot L, Charpin J, Bergez P (1990) Mater Res Bull 25:601

    Article  CAS  Google Scholar 

  16. Krstic VD (1992) J Am Ceram Soc 75:170

    Article  CAS  Google Scholar 

  17. Corriu RJP, Gerbier P, Guerin C, Henner B (1992) Angew Chem Int Ed 31:1195

    Article  Google Scholar 

  18. Zheng Y, Wang R, Wei RKW (2008) J Mater Sci 43:5331. doi:10.1007/s10853-008-2778-8

    Article  CAS  Google Scholar 

  19. Jin GQ, Guo XY (2003) Micropor Mesopor Mater 60:207

    Article  CAS  Google Scholar 

  20. Colombo P, Mera G, Riedel R, Soraru GD (2010) J Am Ceram Soc 93:1805

    CAS  Google Scholar 

  21. Babic B, Bucevac D, Radosavljevic-Mihajlovic A, Dosen A, Zagorac J, Pantic J, Matovic B (2012) J Eur Ceram Soc 32:1901

    Article  CAS  Google Scholar 

  22. Xu J, Liu YM, Xue B, Li YX, Fan KN (2011) Phys Chem Chem Phys 13:10111

    Article  CAS  Google Scholar 

  23. Ohji T, Fukushima M (2012) Int Mater Rev 57:115

    Article  CAS  Google Scholar 

  24. Cerovic L, Milonjic SK, Zec SP (1995) Ceram Int 21:271

    Article  CAS  Google Scholar 

  25. Wei GCT (1983) J Am Ceram Soc 66:C111

    Article  CAS  Google Scholar 

  26. Larpkiattaworn S, Ngernchuklin P, Khongwong W, Pankurddee N, Wada SW (2006) Ceram Int 32:899

    Article  CAS  Google Scholar 

  27. Shen XN, Zheng Y, Zhan YY, Cai GH, Xiao YH (2007) Mat Lett 61:47666

    Google Scholar 

  28. Moene R, Makkee M, Moulijn JA (1998) Appl Catal A 167:321

    Article  CAS  Google Scholar 

  29. Vannice MA, Chao YL, Friedman RM (1986) Appl Catal 20:91

    Article  CAS  Google Scholar 

  30. Lednor PW (1992) Catal Today 15:243

    Article  CAS  Google Scholar 

  31. Li FB, Qian QL, Zhang SF, Yan F, Yuan GQ (2007) J Nat Gas Chem 16:363

    Article  CAS  Google Scholar 

  32. Wang DH, Fu X, Jin GQ, Guo XY (2011) Int J Mater Res 102:1408

    Article  CAS  Google Scholar 

  33. Tomasik P, Palasinski M, Wiejak S (1989) Adv Carbohydr Chem Biochem 47:203

    Article  CAS  Google Scholar 

  34. Hérault D, Rodembusch FLC, Gingras M, Cerveau G, Corriu RJP (2010) C R Chimie 13:566

    Article  Google Scholar 

  35. Deschanels X, Delchet C, Herault D, Magnin V, Podor R, Cerveau G, Zemb T, Corriu R (2010) Prog Colloid Polym Sci 137:47

    CAS  Google Scholar 

  36. Avnir D, Klein LC, Levy D, Schubert U, Wojcik AB (2003) In: Rappoport Z, Apeloig Y (eds) The chemistry of organic silicon compounds, vol 2. Wiley, Chichester

    Google Scholar 

  37. Uchino T, Aboshi A, Kohara S, Ohishi Y, Sakashita M, Aoki K (2004) Phys Rev B 69:155409

    Article  Google Scholar 

  38. Corriu RJP, Gerbier P, Guerin C, Henner BJL, Jean AN, Mutin PH (1992) Organometallics 11:2507

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the GNR MATINEX, common to CNRS and CEA, for its financial support as well as M. Georges for his work on the molecular route. The authors also thank the COST network D43 and CM1011 for allowing discussions of all aspects of preparing nanomaterials during annual meetings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Deschanels.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deschanels, X., Hérault, D., Arrachart, G. et al. Comparison of two soft chemistry routes for the synthesis of mesoporous carbon/β-SiC nanocomposites. J Mater Sci 48, 4097–4108 (2013). https://doi.org/10.1007/s10853-013-7222-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7222-z

Keywords

Navigation