Skip to main content
Log in

Fabrication of Pt, Pt–Cu, and Pt–Sn nanofibers for direct ethanol protonic ceramic fuel cell application

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly(vinyl pyrrolidone) with a M w of 1.3 × 106 g/mol (PVP) or 4 × 104 g/mol (PVPLow) was used as a polymer to fabricate PVP–Pt, PVP–Pt–Cu, and PVPLow–Pt–Sn composite fibers by electrospinning. The effect of varying the electrospinning conditions on the fiber morphology was investigated, and the solution composition and electrospinning parameters were optimized to obtain composite fibers with a minimal bead formation. Pt, Pt–Cu, and Pt–Sn metal nanofibers were then obtained by heat treatment of the respective PVP–metal or PVPLow–metal composite fibers at 300, 350, and 450 °C, respectively, in air for 5 h. Single cells of a direct ethanol protonic ceramic fuel cell were subsequently fabricated by applying the metal nanofibers, or a commercial Pt paste, as the anode on the surfaces of BaY0.2Zr0.8O3−δ pellets and Pt paste as the cathode. The I–V polarization results showed that the metal nanofiber-based anode single cells provided higher maximum power densities than that of the Pt paste anode, with the Pt nanofiber-based anode single cell producing the highest maximum power density of 0.58 mW/cm2 at 550 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Tayal J, Rawat B, Basu S (2011) Int J Hydrogen Energy 36:14884. doi:10.1016/j.ijhydene.2011.03.035

    Article  CAS  Google Scholar 

  2. Otomo J, Nishida S, Takahashi H, Nagamoto H (2008) J Electroanal Chem 615:84. doi:10.1016/j.jelechem.2007.11.019

    Article  CAS  Google Scholar 

  3. Rousseau S, Coutanceau C, Lamy C, Léger J-M (2006) J Power Sources 158:18. doi:10.1016/j.jpowsour.2005.08.027

    Article  CAS  Google Scholar 

  4. Song S, Wang Y, Shen P (2007) Chin J Catal 28:752. doi:10.1016/S1872-2067(07)60063-1

    Article  CAS  Google Scholar 

  5. Cimenti M, Hill JM (2009) J Power Sources 186:377. doi:10.1016/j.jpowsour.2008.10.043

    Article  CAS  Google Scholar 

  6. Colmati F, Antolini E, Gonzalez ER (2006) J Power Sources 157:98. doi:10.1016/j.jpowsour.2005.07.087

    Article  CAS  Google Scholar 

  7. Kim HJ, Kim YS, Seo MH, Choi SM, Cho J, Huber GW, Kim WB (2010) Electrochem Commun 12:32. doi:10.1016/j.elecom.2009.10.029

    Article  CAS  Google Scholar 

  8. Liu Z, Ling XY, Su X, Lee JY, Gan LM (2005) J Power Sources 149:1. doi:10.1016/j.jpowsour.2005.02.009

    Article  Google Scholar 

  9. Purgato FLS, Pronier S, Olivi P, de Andrade AR, Léger JM, Tremiliosi-Filho G, Kokoh KB (2012) J Power Sources 198:95. doi:10.1016/j.jpowsour.2011.09.060

    Article  CAS  Google Scholar 

  10. Nakagawa N, Kaneda Y, Wagatsuma M, Tsujiguchi T (2012) J Power Sources 199:103. doi:10.1016/j.jpowsour.2011.10.057

    Article  CAS  Google Scholar 

  11. Jiang L, Sun G, Sun S, Liu J, Tang S, Li H, Zhou B, Xin Q (2005) Electrochim Acta 50:5384. doi:10.1016/j.electacta.2005.03.018

    Article  CAS  Google Scholar 

  12. Tsiakaras PE (2007) J Power Sources 171:107. doi:10.1016/j.jpowsour.2007.02.005

    Article  CAS  Google Scholar 

  13. Sieben JM, Duarte MME (2011) Int J Hydrogen Energy 36:3313. doi:10.1016/j.ijhydene.2010.12.020

    Article  CAS  Google Scholar 

  14. Antolini E (2007) J Power Sources 170:1. doi:10.1016/j.jpowsour.2007.04.009

    Article  CAS  Google Scholar 

  15. Zhang X, Li D, Dong D, Wang H, Webley PA (2010) Mater Lett 64:1169. doi:10.1016/j.matlet.2010.02.041

    Article  CAS  Google Scholar 

  16. Choi SM, Kim JH, Jung JY, Yoon EY, Kim WB (2008) Electrochim Acta 53:5804. doi:10.1016/j.electacta.2008.03.041

    Article  CAS  Google Scholar 

  17. Kim HJ, Kim YS, Seo MH, Choi SM, Kim WB (2009) Electrochem Commun 11:446. doi:10.1016/j.elecom.2008.12.027

    Article  CAS  Google Scholar 

  18. Kim JM, Joh H-I, Jo SM, Ahn DJ, Ha HY, Hong S-A, Kim S-K (2010) Electrochim Acta 55:4827. doi:10.1016/j.electacta.2010.03.036

    Article  CAS  Google Scholar 

  19. Kim YS, Nam SH, Shim H-S, Ahn H-J, Anand M, Kim WB (2008) Electrochem Commun 10:1016. doi:10.1016/j.elecom.2008.05.003

    Article  CAS  Google Scholar 

  20. Zhou W-P, Li M, Koenigsmann C, Ma C, Wong SS (2011) Electrochim Acta 56:9824. doi:10.1016/j.electacta.2011.08.055

    Article  CAS  Google Scholar 

  21. Iwahara H, Yajima T, Hibino T, Ozaki K, Suzuki H (1993) Solid State Ionics 61:65. doi:10.1016/0167-2738(93)90335-Z

    Article  CAS  Google Scholar 

  22. Kreuer KD (2003) Annu Rev Mater Res 33:333

    Article  CAS  Google Scholar 

  23. Fabbri E, Pergolesi D, Licoccia S, Traversa E (2010) Solid State Ionics 181:1043. doi:10.1016/j.ssi.2010.06.007

    Article  CAS  Google Scholar 

  24. Kosasang O, Somroop K, Chindaudom P, Pornprasertsuk R (2009) ECS Trans 19:145

    Article  CAS  Google Scholar 

  25. Pornprasertsuk R, Kosasang O, Somroop K, Horprathum N, Limnonthakul P, Chindaudom P, Jinawath S (2011) Solid State Sci 13:1429. doi:10.1016/j.solidstatesciences.2011.04.015

    Article  CAS  Google Scholar 

  26. Pornprasertsuk R, Yuwapattanawong C, Permkittikul S, Tungtidtham T (2012) Int J Precis Eng Manuf 13:1813

    Article  Google Scholar 

  27. Peng C, Melnik J, Li J, Luo J, Sanger AR, Chuang KT (2009) J Power Sources 190:447. doi:10.1016/j.jpowsour.2009.01.020

    Article  CAS  Google Scholar 

  28. Babilo P, Haile SM (2005) J Am Ceram Soc 88:2362

    Article  CAS  Google Scholar 

  29. Shui J, Li JCM (2009) Nano Lett 9:1307

    Article  CAS  Google Scholar 

  30. Bhardwaj N, Kundu SC (2010) Biotechnol Adv 28:325. doi:10.1016/j.biotechadv.2010.01.004

    Article  CAS  Google Scholar 

  31. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223. doi:10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  32. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Polymer 43:4403. doi:10.1016/S0032-3861(02)00275-6

    Article  CAS  Google Scholar 

  33. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley Inc., New York, p 78

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Asst. Prof. Dr. Thanakorn Wasanapianpong for his assistance on the processing equipment; Wirapong Kornpanom, Thanakorn Tepamart and Boonleau Ngaotawornchai for the XRD, SEM and TEM analysis; Mana Rodchome, Dr. Sumittra Charojrochkul and Pranuda Jivaganont (National Metal and Materials Technology Center) for the help with the cold isostatic pressing equipment, fuel cell test station and high temperature furnace; and Dr. Robert Butcher for the suggestion on the manuscript preparation. The authors acknowledge the financial support from the Research, Development and Engineering (RD&E) fund through The National Nanotechnology Center (NANOTEC), The National Science and Technology Development Agency (NSTDA), Thailand (Project No. P-11-00984) to Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rojana Pornprasertsuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaipimai, W., Pornprasertsuk, R. Fabrication of Pt, Pt–Cu, and Pt–Sn nanofibers for direct ethanol protonic ceramic fuel cell application. J Mater Sci 48, 4059–4072 (2013). https://doi.org/10.1007/s10853-013-7218-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7218-8

Keywords

Navigation