Skip to main content

Advertisement

Log in

Can particle-stabilized inorganic dispersions be high-temperature heat-transfer and thermal energy storage fluids?

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Particle-stabilized dispersions are considered as potential high-temperature, high-energy–density heat transfer fluids as well as thermal energy storage materials. To be useful practically, these dispersions need to be stable against coalescence and have low viscosity. We present indirect experimental evidence of particle stabilization of Al–Si in NaCl–NaF dispersions with graphite as the stabilizer. We found no evidence of particle stabilization in the same system with boron carbide, silicon carbide, silica, or zirconia as the stabilizer. We also present indirect experimental evidence of particle stabilization in Al/B2O3/C and Al/NaCl–KCl/Al2O3 dispersed phase/dispersion media/stabilizer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. US Department of Energy (2012) Multidisciplinary university research initiative: high operating temperature fluids funding opportunity announcement, No. DE-FOA-0000567

  2. Gibbs JP, Hejzlar P, Driscoll MJ (September 15, 2006) Report No.: MIT-GFR-037 applicability of supercritical CO2 power conversion systems to GEN IV reactors

  3. RWE Power (2012) Adele—adiabatic compressed air energy storage for electricity supply. http://www.rwe.com/web/cms/mediablob/en/399030/data/365478/2/rwe/innovation/projects-technologies/energy-storage/project-adele/ADELE-Adiabatic-Compressed-Air-Energy-Storage-for-electricity-supply.pdf. Accessed 30 Oct 2012

  4. HSC Thermochemistry Software Version 5.11 (2010) Outotec

  5. Sze D-K (July 2001) FLINABE, Argonne National Laboratory

  6. Han ZH, Cao FY, Yan B (2008) Appl Phys Lett 92:243104

    Article  Google Scholar 

  7. Pickering SU (1907) J Chem Soc 91:2001

    Article  Google Scholar 

  8. Aveyard R, Binks BP, Clint JH (2003) Adv Coll Interface Sci 100:503

    Article  Google Scholar 

  9. Melle S, Lask M, Fuller GG (2005) Langmuir 21:2158

    Article  CAS  Google Scholar 

  10. Banhart J (2006) Adv Eng Mater 8:781

    Article  CAS  Google Scholar 

  11. Budai I, Kaptay G (2009) Metall Mater Trans A 40:1524

    Article  Google Scholar 

  12. Budai I, Kaptay G (2011) Intermetallics 19:423

    Article  CAS  Google Scholar 

  13. Nagy OZ, Szabo JT, Kaptay G (2012) Intermetallics 26:26

    Article  CAS  Google Scholar 

  14. Nakajima T, Nakanishi K, Watanabe N (1976) Bull Chem Soc Jpn 49:994

    Article  CAS  Google Scholar 

  15. Nakajima T, Nakanishi K, Watanabe N (1975) Nippon Kagaku Kaishi, p 617

  16. Minami R, Nakajima T, Watanabe N (1975) Nippon Kagaku Kaishi, p 1892

  17. Budai I, Nagy OZ, Kaptay G (2011) Coll Surf A 377:325

    Article  CAS  Google Scholar 

  18. Silny A (1996) J Chem Eng Data 41:1340

    Article  CAS  Google Scholar 

  19. Roscoe R (1952) Brit J Appl Phys 267:267

    Article  Google Scholar 

  20. Kissa E (1999) Dispersions: characterization, testing, and measurement. Marcel Dekker, New York 173

    Google Scholar 

  21. Madarasz D, Budai I, Kaptay G (2011) Metall Mater Trans A 42:1439

    Article  CAS  Google Scholar 

  22. Scheidt RC, Freiling EC (1965) Ion-exchange processes between immiscible molten phases. US Naval Radiological Defense Laboratory, San Francisco

    Book  Google Scholar 

  23. Nakajima T, Nonaka H, Watanabe N (1977) Nippon Kagaku Kaishi, p 959

  24. Binks B, Lumsdon S (2000) Langmuir 16:8622

    Article  CAS  Google Scholar 

  25. Kissa E (1999) Dispersions: characterization, testing, and measurement. Marcel Dekker, New York, p 137

    Google Scholar 

  26. Witzke WR (1958) The adhesion of molten boron oxide to various materials. Lewis Flight Propulsion Laboratory, Cleveland

    Google Scholar 

  27. Budai I (2012) Materialwiss Werkstofftech 43:345

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the US. Department of Energy under Contract No. DE-AC36-08GO28308 to the National Renewable Energy Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne K. Starace.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 773 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starace, A.K., Gomez, J.C. & Glatzmaier, G.C. Can particle-stabilized inorganic dispersions be high-temperature heat-transfer and thermal energy storage fluids?. J Mater Sci 48, 4023–4031 (2013). https://doi.org/10.1007/s10853-013-7214-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7214-z

Keywords

Navigation