Skip to main content

Advertisement

Log in

Processing and properties of bulk ultrafine-grained pure niobium

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An ultrafine-grained (UFG) microstructure in electron beam-melted casts of commercial pure niobium (Nb) was produced in an equal-channel angular pressing die with a right angle, without roundings, at 12 passes, and by the B c route. Additional microstructural improvements were made by hard cyclic viscoplastic deformation and the double-bounded microstructure was formed. The new nanoindentation technique was used to study the pure Nb micro-mechanical properties of the shear bands (SBs). The wear resistance of Nb was studied by a ball-on-plate tribometer with an alumina (Al2O3) counterface ball. The results showed that the nanohardness of pure Nb on boundaries of SBs was ~6 GPa, while inside of SBs, it was only ~3.5 GPa (measured under an indentation load of 10 mN). The corresponding elastic modules were ~150 and ~100 GPa, respectively. Such heterogeneity of the micromechanical properties has an influence on the coefficient of friction (COF) and the wear rate. The Nb with an UFG microstructure has an increased COF and a higher specific wear rate as compared to the as-cast sample. The COF depends on the direction of the wear test relative to the SBs’ orientation. As the boundaries of SBs have the highest hardness, compared to areas inside of SBs, the wear track surface has a high roughness, which leads to an increase in the COF of the double-banded ultrafine-rained pure Nb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reed RC (2006) The superalloys. Fundamentals and applications. Cambridge University Press, New York

    Book  Google Scholar 

  2. Grinberg BA, Ivanov MA (2002) The intermetallides Ni3Al and TiAl. Microstructure and deformation behavior. Ekaterinburg, Russia, UDK 548.4.001: 669.24571 (in Russian)

  3. Heisterkamp F, Carneiro T (2001) Niobium science and technology: proceedings of the international symposium niobium 2001, Orlando, FL, USA. Niobium 2001 Ltd, 2002. ISBN: 9780971206809. http://www.cbmm.com.br/portug/sources/techlib/science_techno/table_content/images/pdfs/closing.pdf

  4. Zeng-Hui L, Jia-Xiang S (2012) Chin Phys B 21-1:016202-1. doi:10.1088/1674-1056/21/1/016202

    Google Scholar 

  5. Lindenhovius JLH, Hornsveld EM, Den Ouden A, Wessel WAJ, Ten Kate HHJ (2000) IEEE Trans Appl Supercond 10:975. doi:10.1109/77.828394

    Article  Google Scholar 

  6. Nave CR (2008) Superconducting magnets. Georgia State University, Department of Physics and Astronomy. http://hyperphysics.phy-astr.gsu.edu/Hbase/solids/scmag.html

  7. Mathaudhu SN, Blum S, Barber RE, Hartwig KT (2005) IEEE Trans Appl Supercond 15(2):3438

    Article  CAS  Google Scholar 

  8. Grill R, Gnadenberge A (2006) Int J Refr Met Hard Mater 24(4):275. doi:10.1016/j.ijrmhm.2005.10.008

    Article  CAS  Google Scholar 

  9. Nikulina AV (2003) Met Sci Heat Treat 45:287. doi:10.1023/A1027388503837

    Article  CAS  Google Scholar 

  10. Lide DR (2004) The elements. CRC handbook of chemistry and physics, 85th edn. CRC Press, Boca Raton, p 4. ISBN 978-0-8493-0485-9

    Google Scholar 

  11. Kommel L (2008) Mater Sci Forum 584–586:349

    Article  Google Scholar 

  12. Kommel L (2008) Mater Sci (Medžiagotyra) 14:319

    Google Scholar 

  13. Kommel L (2004) Rev Adv Mater Sci 10:442

    Google Scholar 

  14. Kommel L, Veinthal R (2005) Rev Adv Mater Sci 10:442

    CAS  Google Scholar 

  15. Kommel L, Mikli V, Traksmaa R, Saarna M, Pokatilov A, Pikker S, Kommel I (2011) Mater Sci Forum 667–669:785. doi:10.4028/www.scientific.net/MSF.667-669.785

    Google Scholar 

  16. Li WL, Tao NR, Han Z, Lu K (2012) Wear 274–275:306. doi:10.1016/j.wear.2011.09.010

    Article  Google Scholar 

  17. El Aal MIA, El Mahallawy N, Shehata FA, El Hameed MA, Yoon EY, Kim HS (2010) Mater Sci Eng A527:3726. doi:10.1016/j.msea.2010.03.057

    Google Scholar 

  18. Purcek G, Saray O, Kul O, Karaman I, Yapici GG, Haouaoui M, Maier HJ (2009) Mater Sci Eng A517:97. doi:10.1016/j.msea.2009.03.054

    CAS  Google Scholar 

  19. Wang CT, Gao N, Gee MG, Wood RJK, Langdon TG (2012) Wear 280–281:28. doi:10.016/j.wear.2012.01.012

    Article  Google Scholar 

  20. La PQ, Ma JQ, Zhu YT, Yang J, Liu WM, Xue QJ, Valiev RZ (2005) Acta Mater 53:5167. doi:10.1016/j.actamat.2005.07.031

    Article  CAS  Google Scholar 

  21. Stolyarov VV, Shuster LS, Migranov MS, Valiev RZ, Zhu YT (2004) Mater Sci Eng A371:313. doi:10.1016/j.msea.2003.12.026

    CAS  Google Scholar 

  22. Michalczewski R, Piekoszewski W, Szczerek M, Tuszynski W (2002) Tribotest J 9(117):117. ISSN: 1354-4063

  23. Mathieu JP, Suwas S, Eberhardt A, Toth LS, Moll P (2006) J Mater Proc Technol 173:29. doi:10.1016/j.jmatprotec.2005.11.007

    Article  CAS  Google Scholar 

  24. Sandim HRZ, Bernardi HH, Verlinden B, Raabe D (2007) Mater Sci Eng A467:44. doi:10.1016/j.msea.2007.02.086

    CAS  Google Scholar 

  25. http://www.micromaterials.co.uk/Hardness_Scale_Conversio.asp

  26. Kommel L, Saarna M, Traksmaa R, Kommel I (2012) Mater Sci (Medžiagotyra) 18-4:330

    Google Scholar 

  27. Shen TD, Zhang J, Zhao Y (2008) Acta Mater 56:3663

    Article  CAS  Google Scholar 

  28. Zhu YT, Wu XL, Liao XZ, Narayan J, Mathaudhu SN, Kecskes LJ (2009) Appl Phys Lett 95:031909. doi:10.1063/1.3187539

    Article  Google Scholar 

  29. Wang YB, Ho JC, Cao Y, Liao XZ, Li HQ, Zhao YH, Lavernia EJ, Ringer SP, Zhu YT (2009) Appl Phys Lett 94:091911. doi:10.1063/1.3095852

    Article  Google Scholar 

  30. Wu XL, Zhu YT, Wei YG, Wei Q (2009) Phys Rev Lett 103:205504. doi:10.1103/PhysRevLett.103.205504

    Article  CAS  Google Scholar 

  31. Narayan J, Zhu YT (2008) Appl Phys Lett 92:151908

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge support from the Estonian Foundation Grant No. SF140062s08 and the EU FP7 ERA.Net Rus STProjects-219, NanoPhase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lembit Kommel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kommel, L., Kimmari, E., Saarna, M. et al. Processing and properties of bulk ultrafine-grained pure niobium. J Mater Sci 48, 4723–4729 (2013). https://doi.org/10.1007/s10853-013-7210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7210-3

Keywords

Navigation