Skip to main content
Log in

Electrospinning preparation and high-temperature superconductivity of YBa2Cu3O7-x nanotubes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

YBa2Cu3O7-x (YBCO) nanotubes (NTs) with high-temperature superconductivity (HTS) were successfully synthesized by electrospinning. A solution of PVP and Y–Ba–Cu acetates was used as precursor in the electrospinning to get nanofibers (NFs). Considering the necessary conditions for NTs formation, a well-designed thermal treatment procedure was carried out to turn the as-spun NFs into NTs. The hollow structure and stoichiometric ratio of the YBCO NTs were validated through TEM and EDX analysis. Due to comparative characterizations of superconductivity between YBCO NTs and bulk sample, it can be concluded that YBCO NTs has HTS but with broader transition temperature width and higher resistance above onset temperature. These novel features were induced by phase slip mechanism and unique structure. This work provides a simple and efficient route to obtain YBCO NTs, which may have new transition properties and significant applications in further researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blatter G, Feigelman MV, Geshkenbein VB, Larkin AI, Vinokur VM (1994) Rev Mod Phys 4:1125

    Article  Google Scholar 

  2. Wollman DA, Van Harlingen DJ, Lee WC, Ginsberg DM, Leggett AJ (1993) Phys Rev Lett 71:2134

    Article  CAS  Google Scholar 

  3. Linzen S, KrauBlich J, KiShler A, Seidel P, Freitag B, Mader W (1997) Physica C 290:323

    Article  CAS  Google Scholar 

  4. Nishio T, Itoh Y, Ogasawara F, Suganuma M, Yamada Y, Mizutani U (1989) J Mater Sci 24:3228. doi:0.1007/BF01139045

    Article  CAS  Google Scholar 

  5. Doiron-Leyraud N, Proust C, LeBoeuf D, Levallois J, Bonnemaison JB, Liang RX, Bonn DA, Hardy WN, Taillefer L (2007) Nature 447:565

    Article  CAS  Google Scholar 

  6. Pan HY, Xu XL, Guo JD (2003) Mater Lett 57:3869

    Article  CAS  Google Scholar 

  7. Zhang GQ, Lu XL, Zhang T, Qu JF, Wang W, Li XG, Yu SH (2006) Nanotechnology 17:4252

    Article  CAS  Google Scholar 

  8. Bezryadin A, Lau CN, Tinkham M (2000) Nature 404:971

    Article  CAS  Google Scholar 

  9. Lau CN, Markovic N, Bockrath M, Bezryadin A, Tinkham M (2001) Phys Rev Lett 87:27003

    Google Scholar 

  10. Xu K, Heath JR (2008) Nano Lett 8:3845

    Article  CAS  Google Scholar 

  11. Prewett PD, Teng J (2005) Phys. Rev. B. 72:174506

    Article  Google Scholar 

  12. Gogotsi Y (2006) Nanotubes and nanofibers. Taylor and Francis Group, LLC

    Book  Google Scholar 

  13. Bonetti JA, Van Harlingen DJ, Weissman MB (2003) Physica C 388–389:343

    Article  Google Scholar 

  14. Papari G, Carillo F, Stornaiuolo D, Longobardi L, Beltram F, Tafuri F (2012) Supercond Sci Technol 25:035011

    Article  Google Scholar 

  15. Tang ZK, Zhang LY, Wang N, Zhang XX, Wen GH, Li GD, Wang JN, Chan CT, Sheng P (2001) Science 292:2462

    Article  CAS  Google Scholar 

  16. Kim T, Kim G, Choi WI, Kwon YK, Zuo JM (2010) Appl Phys Lett 96:173107

    Article  Google Scholar 

  17. Teo WE, Ramakrishna S (2006) Nanotechnology 17:89

    Article  Google Scholar 

  18. Xu L, Song HW, Dong B, Wang Y, Bai X, Wang GL, Liu Q (2009) J Phys Chem C 113:9609

    Article  CAS  Google Scholar 

  19. Xu L, Dong B, Wang Y, Bai X, Liu Q, Song HW (2010) Sens Autuator B 147:531

    Article  Google Scholar 

  20. Chen X, Unruh KM, Ni CY, Ali B, Sun ZC, Lu Q, Deitzel J, Xiao JQ (2011) J Phys Chem C 115:373

    Article  CAS  Google Scholar 

  21. Greenberg Y, Lumelsky Y, Silverstein MS, Zussman E (2008) J Mater Sci 43:1664. doi:10.1007/s10853-007-2389-9

    Article  CAS  Google Scholar 

  22. Uslu I, Ozturk MK, Aksu ML, Gokmese F (2010) Curr Nanosci 6:408

    Article  CAS  Google Scholar 

  23. Frenot A, Chronakis IS (2003) Curr Opin Colloid Interface Sci 8:64

    Article  CAS  Google Scholar 

  24. Langer JS, Ambegaokar V (1967) Phys Rev 164:498

    Article  Google Scholar 

  25. McCumber DE, Halperin BI (1970) Phys Rev B 1:1054

    Article  Google Scholar 

  26. Wright AC, Xia TK, Erbil A (1992) Phys Rev B 45:5607

    Article  Google Scholar 

  27. Zgirski M, Arutyunov KY (2007) Phys Rev B 75:172509

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Center for Smart Materials of the Hong Kong Polytechnic University (Project: 1-BB84), the Natural Science Foundation of Hainan Province (No. 511115), and the Foundation for Yong Teacher of Hainan Normal University (No. QN1240). Support from the National Basic Research Program of China (No. 2009CB939705) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenjiang Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Z., Wang, Y., Chen, W. et al. Electrospinning preparation and high-temperature superconductivity of YBa2Cu3O7-x nanotubes. J Mater Sci 48, 3985–3990 (2013). https://doi.org/10.1007/s10853-013-7207-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7207-y

Keywords

Navigation