Skip to main content
Log in

Zeolite molecular sieve 5A acts as a reinforcing filler, altering the morphological, mechanical, and thermal properties of chitosan

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chitosan-like bio-derived polymers possess a number of useful biological properties, but their mechanical and thermal durability needs to be improved to produce performance-driven materials. Inorganic particles are commonly used as fillers to provide reinforcement in polymer matrix. Zeolites are commercially important inorganic materials that are used extensively as adsorbents, ionic exchangers, and catalysts. One form of zeolite, known as molecular sieve 5A, is a Na+ and Ca2+ exchanged zeolite type A with a 1:1 Si:Al ratio. In this study, the role of zeolite as a reinforcing filler in a chitosan/malonic acid composite was investigated. The thermal stability, mechanical properties, and morphology of the chitosan matrix and chemical interactions within the composites were evaluated. It was observed that zeolite significantly improved the tensile strength, modulus, and thermal stability of chitosan and created a fibrous network-like morphology in the chitosan matrix. This study revealed that the inclusion of zeolite molecular sieve 5A improves the performance of chitosan-based biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chivrac F, Pollet E, Avérous L (2009) Mater Sci Eng 67:1. doi:10.1016/j.mser.2009.09.002

    Article  Google Scholar 

  2. Rhim J-W, Hong S-I, Park H-M, Ng PKW (2006) J Agric Food Chem 54:5814. doi:10.1021/jf060658h

    Article  CAS  Google Scholar 

  3. Ghosh A, Azam Ali M, Walls R (2009) Int J Biol Macromol 46:179. doi:10.1016/j.ijbiomac.2009.11.006

    Article  Google Scholar 

  4. Karakeçili AG, Satriano C, Gümüşderelioğlu M, Marletta G (2007) J Appl Polym Sci 106:3884. doi:10.1002/app.26920

    Article  Google Scholar 

  5. Liu H, Gao C (2009) Polym Adv Technol 20:613. doi:10.1002/pat.1306

    Article  CAS  Google Scholar 

  6. Ghosh A, Ali M (2012) J Mater Sci 47:1196. doi:10.1007/s10853-011-5885-x

    Article  CAS  Google Scholar 

  7. Paul DR, Robeson LM (2008) Polymer 49:3187. doi:10.1016/j.polymer.2008.04.017

    Article  CAS  Google Scholar 

  8. Kumar AP, Depan D, Singh Tomer N, Singh RP (2009) Prog Polym Sci 34:479. doi:10.1016/j.progpolymsci.2009.01.002

    Article  CAS  Google Scholar 

  9. Alexandre M, Dubois P (2000) Mater Sci Eng 28:1. doi:10.1016/s0927-796x(00)00012-7

    Article  Google Scholar 

  10. Fan J, Shi Z, Ge Y, Wang Y, Wang J, Yin J (2012) Polymer 53:657. doi:10.1016/j.polymer.2011.11.060

    Article  CAS  Google Scholar 

  11. Iyer S, Schiraldi DA (2007) Macromolecules 40:4942. doi:10.1021/ma061180l

    Article  CAS  Google Scholar 

  12. Zhao Y, Schiraldi DA (2005) Polymer 46:11640. doi:10.1016/j.polymer.2005.09.070

    Article  CAS  Google Scholar 

  13. Zeng J, Kumar S, Iyer S, Schiraldi DA, Gonzalez RI (2005) High Perform Polym 17:403–424. doi:10.1177/0954008305055562

    Article  CAS  Google Scholar 

  14. Wang X, Du Y, Yang J, Wang X, Shi X, Hu Y (2006) Polymer 47:6738. doi:10.1016/j.polymer.2006.07.026

    Article  CAS  Google Scholar 

  15. Pojanavaraphan T, Magaraphan R, Chiou B-S, Schiraldi DA (2010) Biomacromolecules 11:2640. doi:10.1021/bm100615a

    Article  CAS  Google Scholar 

  16. Zhao H, Ma L, Gao C, Shen J (2008) Polym Adv Technol 19:1590. doi:10.1002/pat.1174

    Article  CAS  Google Scholar 

  17. Cao X, Dong H, Li CM, Lucia LA (2009) J Appl Polym Sci 113:466. doi:10.1002/app.29984

    Article  CAS  Google Scholar 

  18. Yang X, Tu Y, Li L, Shang S, Tao X-m (2010) ACS Appl Mater Interfaces 2:1707. doi:10.1021/am100222m

    Article  CAS  Google Scholar 

  19. Ghosh A, Sciamanna SF, Dahl JE, Liu S, Carlson RMK, Schiraldi DA (2007) J Polym Sci, Part B 45:1077. doi:10.1002/polb.21161

    Article  CAS  Google Scholar 

  20. Hassan M, Hassan E, Oksman K (2011) J Mater Sci 46:1732. doi:10.1007/s10853-010-4992-4

    Article  CAS  Google Scholar 

  21. Sailaja GS, Velayudhan S, Sunny MC, Sreenivasan K, Varma HK, Ramesh P (2003) J Mater Sci 38:3653. doi:10.1023/a:1025689701309

    Article  CAS  Google Scholar 

  22. Hong Thien D, Hsiao S, Ho M, Li C, Shih J (2012) J Mater Sci 1–6. doi: 10.1007/s10853-012-6921-1

  23. Jayakumar R, Prabaharan M, Reis RL, Mano JF (2005) Carbohydr Polym 62:142. doi:10.1016/j.carbpol.2005.07.017

    Article  CAS  Google Scholar 

  24. Zhu Y, Gao C, He T, Liu X, Shen J (2003) Biomacromolecules 4:446. doi:10.1021/bm025723k

    Article  CAS  Google Scholar 

  25. Hong Y, Mao Z, Wang H, Gao C, Shen J (2006) J Biomed Mater Res A 79A:913. doi:10.1002/jbm.a.30837

    Article  CAS  Google Scholar 

  26. Xu H, Ma L, Shi H, Gao C, Han C (2007) Polym Adv Technol 18:869. doi:10.1002/pat.906

    Article  CAS  Google Scholar 

  27. Ma L, Shi Y, Chen Y, Zhao H, Gao C, Han C (2007) J Mater Sci Mater Med 18:2185. doi:10.1007/s10856-007-3088-4

    Article  CAS  Google Scholar 

  28. Aranaz I, Mengibar M, Harris R, Panos I, Miralles B, Acosta N, Galed G, Heras A (2009) Curr Chem Biol 3:203

    CAS  Google Scholar 

  29. Jiankang H, Dichen L, Yaxiong L, Bo Y, Bingheng L, Qin L (2007) Polymer 48:4578. doi:10.1016/j.polymer.2007.05.048

    Article  Google Scholar 

  30. Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chem Rev 104:6017. doi:10.1021/cr030441b

    Article  Google Scholar 

  31. Chen P-H, Kuo T-Y, Liu F-H, Hwang Y-H, Ho M-H, Wang D-M, Lai J-Y, Hsieh H-J (2008) J Agric Food Chem 56:9015. doi:10.1021/jf801081e

    Article  CAS  Google Scholar 

  32. Gang Z, Yubao L, Li Z, Hong L, Mingbo W, Lin C, Yuanyuan W, Huanan W, Pujiang S (2007) J Mater Sci 42:2591. doi:10.1007/s10853-006-1337-4

    Article  Google Scholar 

  33. Saada I, Bissessur R (2012) J Mater Sci 47:5861. doi:10.1007/s10853-012-6486-z

    Article  CAS  Google Scholar 

  34. Breck DW (1964) J Chem Educ 41:678. doi:10.1021/ed041p678

    Article  CAS  Google Scholar 

  35. Tomečková V, Reháková M, Mojžišová G, Magura J, Wadsten T, Zelenáková K (2012) Microporous Mesoporous Mater 147:59. doi:10.1016/j.micromeso.2011.05.031

    Article  Google Scholar 

  36. Seifu DG, Isimjan TT, Mequanint K (2011) Acta Biomater 7:3670. doi:10.1016/j.actbio.2011.06.010

    Article  CAS  Google Scholar 

  37. Firling CE, Evans GL, Wakley GK, Sibonga J, Turner RT (1996) J Bone Mater Res 11:254. doi:10.1002/jbmr.5650110215

    Article  CAS  Google Scholar 

  38. Mumpton FA (1999) Proc Nat Acad Sci USA 96:3463–3470. doi:10.1073/pnas.96.7.3463

    Article  CAS  Google Scholar 

  39. Broussard L, Shoemaker DP (1960) J Am Chem Soc 82:1041. doi:10.1021/ja01490a007

    Article  CAS  Google Scholar 

  40. Brar T, France P, Smirniotis PG (2001) Ind Eng Chem Res 40:1133. doi:10.1021/ie000748q

    Article  CAS  Google Scholar 

  41. Asakura N, Hirokane T, Hoshida H, Yamada H (2011) Tetrahedron 52:534. doi:10.1016/j.tetlet.2010.11.113

    Article  CAS  Google Scholar 

  42. Wang H, Holmberg BA, Yan Y (2002) J Mater Chem 12:3640. doi:10.1039/B207394C

    Article  CAS  Google Scholar 

  43. Huang Z, H-m Guan, Wl Tan, Qiao X-Y, Kulprathipanja S (2006) J Membr Sci 276:260. doi:10.1016/j.memsci.2005.09.056

    Article  CAS  Google Scholar 

  44. Hu C–C, Liu T-C, Lee K-R, Ruaan R-C, Lai J-Y (2006) Desalination 193:14. doi:10.1016/j.desal.2005.04.137

    Article  CAS  Google Scholar 

  45. Yu L, Gong J, Zeng C, Zhang L (2012) Ind Eng Chem Res 51:2299. doi:10.1021/ie202242e

    Article  CAS  Google Scholar 

  46. Yao J, Chen R, Wang K, Wang H (2013) Microporous Mesoporous Mater 165:200. doi:10.1016/j.micromeso.2012.08.018

    Article  CAS  Google Scholar 

  47. Dahe GJ, Teotia RS, Bellare JR (2012) Chem Eng J 197:398. doi:10.1016/j.cej.2012.05.037

    Article  CAS  Google Scholar 

  48. Liu L, Xia D, Zhang Q, Huang M-Y, Jiang Y–Y (1999) Polym Adv Tech 10:103. doi:10.1002/(sici)1099-1581(199901/02)10:1/2<103:aid-pat777>3.0.co;2-t

    Article  Google Scholar 

  49. Ichiura H, Kubota Y, Wu Z, Tanaka H (2001) J Mater Sci 36:913. doi:10.1023/a:1004851101749

    Article  CAS  Google Scholar 

  50. Zhou M, Liu X, Zhang B, Zhu H (2008) Langmuir 24:11942. doi:10.1021/la801879x

    Article  CAS  Google Scholar 

  51. Kennedy CA, Zhan B-Z, White MA (2005) J Comp Mat 39:193. doi:10.1177/0021998305046439

    Article  CAS  Google Scholar 

  52. Budd PM, Ricardo NMPS, Jafar JJ, Stephenson B, Hughes R (2004) Ind Eng Chem Res 43:1863. doi:10.1021/ie034142o

    Article  CAS  Google Scholar 

  53. Kim HS, Pham TT, Yoon KB (2008) J Am Chem Soc 130:2134. doi:10.1021/ja0774820

    Article  CAS  Google Scholar 

  54. Suárez S, Devaux A, Bañuelos J, Bossart O, Kunzmann A, Calzaferri G (2007) Adv Func Mater 17:2298. doi:10.1002/adfm.200600925

    Article  Google Scholar 

  55. Thipmanee R, Sane A (2012) J Appl Polym Sci 126:E252. doi:10.1002/app.36850

    Article  Google Scholar 

  56. Zaharri ND, Othman N, Ishak ZAM (2012) J Vinyl Addit Technol 18:129. doi:10.1002/vnl.20308

    Article  CAS  Google Scholar 

  57. Wan Ngah WS, Teong LC, Wong CS, Hanafiah MAKM (2012) J Appl Polym Sci 125:2417. doi:10.1002/app.36503

    Article  CAS  Google Scholar 

  58. Hamciuc C, Hamciuc E, Okrasa L, Kalvachev Y (2012) J Mater Sci 47:6354. doi:10.1007/s10853-012-6560-6

    Article  CAS  Google Scholar 

  59. Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  60. Greer H, Wheatley PS, Ashbrook SE, Morris RE, Zhou W (2009) J Am Chem Soc 131:17986. doi:10.1021/ja907475z

    Article  CAS  Google Scholar 

  61. Yan Z, Ma D, Zhuang J, Liu X, Liu X, Han X, Bao X, Chang F, Xu L, Liu Z (2003) J Mol Catal A 194:153. doi:10.1016/s1381-1169(02)00531-9

    Article  CAS  Google Scholar 

  62. Apelian MR, Fung AS, Kennedy GJ, Degnan TF (1996) J Phys Chem 100:16577. doi:10.1021/jp960376s

    Article  CAS  Google Scholar 

  63. Giudici R, Kouwenhoven HW, Prins R (2000) Appl Catal A 203:101. doi:10.1016/s0926-860x(00)00470-1

    Article  CAS  Google Scholar 

  64. Demadis KD, Ketsetzi A, Pachis K, Ramos VM (2008) Biomacromolecules 9:3288. doi:10.1021/bm800872n

    Article  CAS  Google Scholar 

  65. Patwardhan SV, Tilburey GE, Perry CC (2011) Langmuir 27:15135. doi:10.1021/la204180r

    Article  CAS  Google Scholar 

  66. Spinde K, Pachis K, Antonakaki I, Paasch S, Brunner E, Demadis KD (2011) Chem Mater 23:4676. doi:10.1021/cm201988g

    Article  CAS  Google Scholar 

  67. Demadis KD, Stathoulopoulou A (2006) Ind Eng Chem Res 45:4436. doi:10.1021/ie0602254

    Article  CAS  Google Scholar 

  68. Lim HN, Huang NM, Loo CH (2012) J Non-Cryst Solids 358:525. doi:10.1016/j.jnoncrysol.2011.11.007

    Article  CAS  Google Scholar 

  69. Wang X, Bai H, Yao Z, Liu A, Shi G (2010) J Mater Chem 20:9032. doi:10.1039/C0JM01852J

    Article  CAS  Google Scholar 

  70. Chen J, Loo LS, Wang K (2011) Carbohydr Polym 86:1151. doi:10.1016/j.carbpol.2011.06.013

    Article  CAS  Google Scholar 

  71. Shieh Y-T, Yang Y-F (2006) Eur Polym J 42:3162. doi:10.1016/j.eurpolymj.2006.09.006

    Article  CAS  Google Scholar 

  72. Tang C, Chen N, Zhang Q, Wang K, Fu Q, Zhang X (2009) Polym Degrad Stab 94:124. doi:10.1016/j.polymdegradstab.2008.09.008

    Article  CAS  Google Scholar 

  73. Wang S-F, Shen L, Zhang W-D, Tong Y-J (2005) Biomacromolecules 6:3067–3072. doi:10.1021/bm050378v

    Article  CAS  Google Scholar 

  74. Oguzlu H, Tihminlioglu F (2010) Macromol Symp 298:91. doi:10.1002/masy.201000030

    Article  CAS  Google Scholar 

  75. Chrissafis K, Paraskevopoulos KM, Papageorgiou GZ, Bikiaris DN (2008) J Appl Polym Sci 110:1739. doi:10.1002/app.28818

    Article  CAS  Google Scholar 

  76. Mabilia M, Pearlstein RA, Hopfinger AJ (1987) J Am Chem Soc 109:7960. doi:10.1021/ja00260a005

    Article  CAS  Google Scholar 

  77. Sun H, Lu L, Chen X, Jiang Z (2008) Appl Surf Sci 254:5367. doi:10.1016/j.apsusc.2008.02.056

    Article  CAS  Google Scholar 

  78. Yuzay IE, Auras R, Selke S (2010) J Appl Polym Sci 115:2262. doi:10.1002/app.31322

    Article  CAS  Google Scholar 

  79. Metın D, Tihminlioğlu F, Balköse D, Ülkü S (2004) Composites Part A 35:23. doi:10.1016/j.compositesa.2003.09.021

    Article  Google Scholar 

  80. Gawryla MD, Schiraldi DA (2009) Macromol Mater Eng 294:570. doi:10.1002/mame.200900094

    Article  CAS  Google Scholar 

  81. Ghosh A, Ali MA, Dias GJ (2009) Biomacromolecules 10:1681. doi:10.1021/bm801341x

    Article  CAS  Google Scholar 

  82. Byun SC, Jeong YJ, Park JW, Kim SD, Ha HY, Kim WJ (2006) Solid State Ionics 177:3233. doi:10.1016/j.ssi.2006.09.014

    Article  CAS  Google Scholar 

  83. Cui Z, Xiang Y, Si J, Yang M, Zhang Q, Zhang T (2008) Carbohydr Polym 73:111. doi:10.1016/j.carbpol.2007.11.009

    Article  CAS  Google Scholar 

  84. Yalçınkaya S, Demetgül C, Timur M, Çolak N (2010) Carbohydr Polym 79:908. doi:10.1016/j.carbpol.2009.10.022

    Article  Google Scholar 

  85. Ravenelle RM, Schüβler F, D’Amico A, Danilina N, van Bokhoven JA, Lercher JA, Jones CW, Sievers C (2010) J Phys Chem C 114:19582. doi:10.1021/jp104639e

    Article  CAS  Google Scholar 

  86. Beyerlein RA, Choi-Feng C, Hall JB, Huggins BJ, Ray GJ (1997) Top Catal 4:27. doi:10.1023/a:1019188105794

    Article  CAS  Google Scholar 

  87. Lutz W, Gessner W, Bertram R, Pitsch I, Fricke R (1997) Microporous Mater 12:131. doi:10.1016/s0927-6513(97)00070-9

    Article  CAS  Google Scholar 

  88. Brouillette F, Chabot B, Morneau D, Daneault C (2004) Microporous Mesoporous Mater 70:51. doi:10.1016/j.micromeso.2004.03.001

    Article  CAS  Google Scholar 

  89. Najar H, Zina M, Ghorbel A (2010) React Kinet Mech Catal 100:385. doi:10.1007/s11144-010-0189-8

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Ministry of Science and Innovation, New Zealand (Contract number: C10X0824). The authors would like to express their sincere gratitude to the Royal Society of New Zealand and the Chinese Ministry of Science and Technology for awarding a fellowship to Arun Ghosh for visiting Zhejiang University under the 2011 New Zealand–China Scientist Exchange Programme. The kind support of the students and staff of Zhejiang University are highly appreciated. The constructive feedback from Anita Grosvenor and Stefan Clerens of AgResearch during the preparation of the manuscript is also highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, A., Ma, L. & Gao, C. Zeolite molecular sieve 5A acts as a reinforcing filler, altering the morphological, mechanical, and thermal properties of chitosan. J Mater Sci 48, 3926–3935 (2013). https://doi.org/10.1007/s10853-013-7194-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7194-z

Keywords

Navigation