Skip to main content

Advertisement

Log in

Effect of severe plastic deformation on creep behaviour of a Ti–6Al–4V alloy

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper examines the effect of severe plastic deformation on creep behaviour of a Ti–6Al–4V alloy. The processed material with an ultrafine-grained (UFG) structure (d ≈ 150 nm) was prepared by multiaxial forging. Uniaxial constant stress compression and constant load tensile creep tests were performed at 648–698 K and at stresses ranging between 300 and 600 MPa on the UFG processed alloy and, for comparison purposes, on its coarse-grained (CG) state. The values of the stress exponents of the minimum creep rate n and creep activation energy Q c were determined. Creep behaviour was also investigated by nanoindentation method at room temperature under constant load. The microstructure was examined by transmission electron microscopy and scanning electron microscope equipped with an electron back scatter diffraction unit. The results of the uniaxial creep tests showed that the minimum creep rates of the UFG specimens are significantly higher in comparison with those of the CG state. However, the differences in the minimum creep rates of both states of alloy strongly decrease with increasing values of applied stress. The CG alloy exhibits better creep resistance than the UFG one over the stress range used; the minimum creep rate for the UFG alloy is about one to two orders of magnitude higher than that of the CG alloy. The indentation creep tests showed that annealing had little effect on the creep behaviour in UFG Ti alloy at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sklenicka V, Dvorak J, Svoboda M (2004) Mater Sci Eng A 387–389:696. doi:10.1016/j.msea.2004.01.111

    Google Scholar 

  2. Sklenicka V, Dvorak J, Kral P, Stonawska Z, Svoboda M (2005) Mater Sci Eng A 410–411:408. doi:10.1016/j.msea.2005.08.099

    Google Scholar 

  3. Kolobov YR, Grabovetskaya GP, Ivanov KV, Ivanov MB (2002) Interface Sci 10:31. doi:10.1023/A:1015128928158

    Article  CAS  Google Scholar 

  4. Dvorak J, Sklenicka V, Horita Z (2008) Mater Trans 49:15. doi:10.2320/matertrans.ME200719

    Article  CAS  Google Scholar 

  5. Dobatkin SV, Szpunar JA, Zhilyaev AP, Cho J-Y, Kuznetsov AA (2007) Mater Sci Eng A 462:132–138. doi:10.1016/j.msea.2006.04.156

    Article  Google Scholar 

  6. Stolyarov VV, Zhu YT, Lowe TC, Valiev RZ (2001) Mater Sci Eng A 303:82. doi:10.1016/S0921-5093(00)01884-0

    Article  Google Scholar 

  7. Zherebtsov Z, Kudryavtsev E, Kostjuchenko S, Malysheva S, Salishchev G (2012) Mater Sci Eng A 536:190. doi:10.1016/j.msea.2011.12.102

    Article  CAS  Google Scholar 

  8. Huang Y, Figueiredo RB, Baudin T, Helbert A-L, Brisset F, Langdon TG (2012) J Mater Sci 47:7796–7806. doi:10.1007/s10853-012-6578-9

    Article  CAS  Google Scholar 

  9. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881. doi:10.1016/j.pmatsci.2006.02.003

    Article  CAS  Google Scholar 

  10. Blum W, Li YJ, Durst K (2009) Acta Mater 57:5207. doi:10.1016/j.actamat.2009.07.030

    Article  CAS  Google Scholar 

  11. Blum W, Li YJ, Zhang Y, Wang JT (2011) Mater Sci Eng A 528:8621. doi:10.1016/j.msea.2011.08.010

    Article  CAS  Google Scholar 

  12. Xu Ch, Langdon TG (2005) Mater Sci Eng A 410–411:398. doi:10.1016/j.msea.2005.08.072

    Google Scholar 

  13. Kawasaki M, Beyerlein IJ, Vogel SC, Langdon TG (2008) Acta Mater 56:2307. doi:10.1016/j.actamat.2008.01.023

    Article  CAS  Google Scholar 

  14. Dvorak J, Sklenicka V, Kral P, Svoboda M, Saxl I (2010) Rev Adv Mater Sci 25:225

    CAS  Google Scholar 

  15. Kvapilova M, Sklenicka V, Dvorak J, Kral P (2011) Key Eng Mater 465:382. doi:10.4028/www.scientific.net/KEM.465.382

    Article  CAS  Google Scholar 

  16. Sklenicka V, Dvorak J, Kvapilova M, Svoboda M, Kral P, Saxl I, Horita Z (2007) Mater Sci Forum 539–543:2904

    Article  Google Scholar 

  17. Kral P, Dvorak J, Sklenicka V (2008) Mater Sci Forum 584–586:846

    Article  Google Scholar 

  18. Sklenicka V, Dvorak J, Kral P, Svoboda S, Kvapilova M, Kopilov VI, Nikulin SA, Dobatkin SV (2012) Acta Phys Pol A 122:485

    CAS  Google Scholar 

  19. Kral P, Svoboda M, Dvorak J, Kvapilova M, Sklenicka V (2012) Acta Phys Pol A 122:457

    CAS  Google Scholar 

  20. Dvorak J, Kral P, Kvapilova M, Svoboda M, Sklenicka V (2011) Mater Sci Forum 667–669:821. doi:10.4028/www.scientific.net/MSF.667-669.821

    Google Scholar 

  21. Blum W, Eisenlohr P (2010) J Phys 240:1. doi:10.1088/1742-6596/240/1/012136

    Google Scholar 

  22. Wang CL, Lai YH, Huang JC, Nieh TG (2010) Scr Mater 62:175. doi:10.1016/j.scriptamat.2009.10.021

    Article  CAS  Google Scholar 

  23. Raman R, Berriche R (1992) J Mater Res 7:627. doi:10.1557/JMR.1992.0627

    Article  CAS  Google Scholar 

  24. Mayo MJ, Nix WD (1998) Acta Metall 36:2183. doi:10.1016/0001-6160(88)90319-7

    Google Scholar 

  25. Chen J, Bull SJ (2009) Surf Coat Technol 203:1609. doi:10.1016/j.surfcoat.2008.12.007

    Article  CAS  Google Scholar 

  26. Liu Y, Huang Ch, Bei H, He X, Hu W (2012) Mater Lett 70:2. doi:10.1016/j.matlet.2011.11.119

    Google Scholar 

  27. Zherebtsov SV, Salishchev GA, Galeyev RM, Valiakhmetov OR, Mironov SYu, Semiatin SL (2004) Scr Mater 51:1147. doi:10.1016/j.scriptamat.2004.08.018

    Article  CAS  Google Scholar 

  28. Wang YM, Chen MV, Zhou FH, Ma E (2002) Nature 419:912. doi:10.1038/nature01133

    Article  CAS  Google Scholar 

  29. Koch CC (2003) Scr Mater 49:657. doi:10.1016/S1359-6462(03)00394-4

    Article  CAS  Google Scholar 

  30. Ma E (2003) Scr Mater 49:663. doi:10.1016/S1359-6462(03)00396-8

    Article  CAS  Google Scholar 

  31. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi:10.1016/S0079-6425(99)00007-9

    Article  CAS  Google Scholar 

  32. Grabovetskaya GP, Ivanov KV, Kolobov YR (2002) Ann Chim Sci Mater 27:89. doi:10.1016/S0151-9107(02)80010-1

    Article  CAS  Google Scholar 

  33. Salishchev G, Zherebtsov S, Malysheva S, Smyslov A, Saphin E, Izmaylova N (2008) Mater Sci Forum 584–586:783

    Article  Google Scholar 

  34. Evans WJ, Harrison GF (1983) J Mater Sci 18:3449. doi:10.1007/BF00544173

    Article  CAS  Google Scholar 

  35. Barboza MJR, Perey EAC, Medeiros MM, Reis DAP, Nono MCA, Neto FP, Silva CRM (2006) Mater Sci Eng A 428:319. doi:10.1016/j.msea.2006.05.089

    Article  Google Scholar 

  36. Cadek J (1988) Creep in metallic materials. Academia, Prague

    Google Scholar 

  37. Köppers M, Herzig CHR, Friesel M, Mishin Y (1997) Acta Mater 45:4181. doi:10.1016/S1359-6454(97)00078-5

    Article  Google Scholar 

  38. Bakker H, Bonzel HP, Bruff CM, Dayananda MA, Gust W, Horváth J, Kaur I, Kidson GV, Le Claire AD, Mehrer H, Murch GE, Neumann G, Stolica N, Stolwijk NA (1990) Landolt-Börnstein: numerical data and functional relationships in science and technology. In: Mehrer H (ed) New series group III: crystal and solid state physics, vol 26: Diffusion in solid metals and alloys. Springer, Berlin

  39. Blum W, Zheng XH (2009) Acta Mater 57:1966. doi:10.1016/j.actamat.2008.12.041

    Article  CAS  Google Scholar 

  40. Divinski SV, Ribbe J, Baither D, Schmitz G, Reglitz G, Rösner H, Sato K, Estrin Y, Wilde G (2009) Acta Mater 57:5706. doi:10.1016/j.actamat.2009.07.066

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the Czech Science Foundation under Grant 108/10/P469 and by CEITEC—Central European Institute of Technology with research infrastructure supported by the project CZ.1.05/1.1.00/02.0068 financed from European Regional Development Fund. S. Zherebtsov was supported by the Federal Agency for Education, Russia; Grant #14.A18.21.1637. We thank Prof. W. Blum for helpful discussion and exchange of ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Kral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kral, P., Dvorak, J., Zherebtsov, S. et al. Effect of severe plastic deformation on creep behaviour of a Ti–6Al–4V alloy. J Mater Sci 48, 4789–4795 (2013). https://doi.org/10.1007/s10853-013-7160-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7160-9

Keywords

Navigation