Skip to main content
Log in

Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A Cu-11.8 wt% Al alloy was quenched in iced water from a high temperature (850 °C) to introduce a martensitic phase and then the alloy was processed using quasi-constrained high-pressure torsion (HPT). The micro-hardness and the microstructures of the unprocessed and severely deformed materials were investigated using a wide range of experimental techniques (X-ray diffraction, optical microscopy, scanning electron microscopy, transmission electron microscopy, and high- resolution TEM). During HPT, a stress-induced martensite–martensite transformation occurs and an \( \alpha^{\prime}_{1} \) martensite phase is formed. In the deformed material, there are nanoscale deformation bands having high densities of defects and twins in the \( \alpha^{\prime}_{1} \) martensite. It was observed that a high density of dislocations became pinned and accumulated in the vicinity of twin boundaries, thereby demonstrating a strong interaction between twin boundaries and dislocations during the HPT process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  2. Meyers MA, Mishra A, Benson DJ (2006) Prog Mater Sci 51:427

    Article  CAS  Google Scholar 

  3. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  4. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  5. Li YS, Tao NR, Lu K (2008) Acta Mater 56:230

    Article  CAS  Google Scholar 

  6. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1997) Acta Mater 45:478

    Article  Google Scholar 

  7. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317

    Article  CAS  Google Scholar 

  8. Hughes DA, Hansen N (2000) Acta Mater 48:2985

    Article  CAS  Google Scholar 

  9. Dalla Torre F, Lapovok R, Sandlin J, Thomson PF, Davies CHJ, Pereloma EV (2004) Acta Mater 52:4819

    Article  CAS  Google Scholar 

  10. Hebesberger T, Stuwe HP, Vorhauer A, Wetscher F, Pippan R (2005) Acta Mater 53:393

    Article  CAS  Google Scholar 

  11. Mishra A, Kad BK, Gregori F, Meyers MA (2007) Acta Mater 55:13

    Article  CAS  Google Scholar 

  12. Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203

    Article  CAS  Google Scholar 

  13. Langdon TG (2007) Mater Sci Eng A462:3

    CAS  Google Scholar 

  14. Zhang Y, Tao NR, Lu K (2008) Acta Mater 56:2429

    Article  CAS  Google Scholar 

  15. Edalati K, Fujioka T, Horita Z (2008) Mater Sci Eng A 497:168

    Article  Google Scholar 

  16. Kawasaki M, Horita Z, Langdon TG (2009) Mater Sci Eng A524:143

    CAS  Google Scholar 

  17. Tao NR, Lu K (2009) Scripta Mater 60:1039

    Article  CAS  Google Scholar 

  18. Lu K, Hansen N (2009) Scripta Mater 60:1033

    Article  CAS  Google Scholar 

  19. Qu S, An XH, Yang HJ, Huang CX, Yang G, Zang QS, Wang ZG, Wu SD, Zhang ZF (2009) Acta Mater 57:1586

    Article  CAS  Google Scholar 

  20. Balogh L, Figueiredo RB, Ungár T, Langdon TG (2010) Mater Sci Eng A528:533

    CAS  Google Scholar 

  21. Ni S, Wang YB, Liao XZ, Li HQ, Figueiredo RB, Ringer SP, Langdon TG, Zhu YT (2011) Phys Rev B 84:235401

    Article  Google Scholar 

  22. Zhang Y, Tao NR, Lu K (2011) Acta Mater 59:6048

    Article  CAS  Google Scholar 

  23. An XH, Lin QY, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2011) Scripta Mater 64:954

    Article  CAS  Google Scholar 

  24. Ni S, Wang YB, Liao XZ, Alhajeri SN, Li HQ, Ringer SP, Langdon TG, Zhu YT (2011) Mater Sci Forum 667–669:181

    Google Scholar 

  25. Zhu YT, Liao XZ, Wu XL (2012) Prog Mater Sci 57:1

    Article  CAS  Google Scholar 

  26. Ni S, Wang YB, Liao XZ, Figueiredo RB, Li HQ, Ringer SP, Langdon TG, Zhu YT (2012) Acta Mater 60:3181

    Article  CAS  Google Scholar 

  27. Hodge AM, Furnish TA, Shite CJ, Liao Y, Huang X, Hong CS, Zhu YT, Barbee TW, Weertman JR (2012) Scripta Mater 66:872

    Article  CAS  Google Scholar 

  28. Li YS, Zhang Y, Tao NR, Lu K (2009) Acta Mater 57:761

    Article  CAS  Google Scholar 

  29. Balogh L, Ungár T, Zhao Y, Zhu YT, Horita Z, Xu C, Langdon TG (2008) Acta Mater 56:809

    Article  CAS  Google Scholar 

  30. Wu X, Tao NR, Hong K, Liu G, Xu B, Lu J, Lu K (2005) Acta Mater 53:681

    Article  CAS  Google Scholar 

  31. Zhao WS, Tao NR, Guo JY, Lu QH, Lu K (2005) Scripta Mater 53:745

    Article  CAS  Google Scholar 

  32. Duggan BJ, Hatherly M, Hutchinson WB, Wakefield PT (1978) Metal Sci 12:343

    Article  CAS  Google Scholar 

  33. Hatherly M, Malin AS (1979) Metal Technol 6:308

    CAS  Google Scholar 

  34. Wakefield PT, Hatherly M (1981) Met Sci 15:109

    Article  CAS  Google Scholar 

  35. Donadille C, Valle R, Dervin P, Penelle R (1989) Acta Metall 37:1547

    Article  CAS  Google Scholar 

  36. Abd El Aal MI (2011) Mater Sci Eng A528:6946

    Google Scholar 

  37. Greninger AB (1939) Trans AIME 133:204

    Google Scholar 

  38. Kurdjumov GV, Miretskit V, Stelletzkaya T (1959) J Tech Phys USSR 938:8

    Google Scholar 

  39. Nakanishi N (1961) Trans Jpn Inst Metals 2:85

    Google Scholar 

  40. Swann PR, Warlimont H (1963) Acta Metall 11:511

    Article  Google Scholar 

  41. Tas H, Delaey L, Deruyttere A (1971) Scripta Metall 5:1117

    Article  CAS  Google Scholar 

  42. Tas H, Delaey L, Deruyttere (1973) Z Metallkd 64:855

    CAS  Google Scholar 

  43. Otsuka K, Sakamoto H, Shimizu K (1979) Acta Metall 27:585

    Article  CAS  Google Scholar 

  44. Gyobu A, Enami K, Nagasawa A, Nenno S (1982) J Phys Colloq 43:641

    Article  Google Scholar 

  45. Sittner P, Lukás P, Neov D, Daymond MR, Novák V, Swallowe GM (2002) Mater Sci Eng A 324:225

    Article  Google Scholar 

  46. Kozlova LE, Titenko AN (2006) Mater Sci Eng A 438–440:738

    Google Scholar 

  47. Dia V, Stanciu S, Bujoreanu LG, Munteanu C (2008) Mater Sci Eng A 481–482:494

    Google Scholar 

  48. Huang HY, Liu JP, Wang Y, Liu XF, Xie JX (2012) Mater Lett 79:51

    Article  CAS  Google Scholar 

  49. Rohatgi A, Vecchio KS, Gray GT (2001) Metall Mater Trans A 32A:135

    Article  CAS  Google Scholar 

  50. Kawasaki M, Langdon TG (2008) Mater Sci Eng A 498:341

    Article  Google Scholar 

  51. Tian YZ, An XH, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2010) Scripta Mater 63:65

    Article  CAS  Google Scholar 

  52. Figueiredo RB, Cetlin PR, Langdon TG (2011) Mater Sci Eng A528:8198

    Google Scholar 

  53. Brooks CR (1982) Heat treatment, microstructure and properties of nonferrous alloys. ASM International, Metals Park

    Google Scholar 

  54. Estrin Y, Molotnikov A, Davies CHJ, Lapovok R (2008) J Mech Phys Solids 56:1186

    Article  CAS  Google Scholar 

  55. Hurtado MRF, Portillo J, Maniette Y, Adorno AT, Benedetti AV (1998) J Alloys Compd 280:188

    Article  CAS  Google Scholar 

  56. Liu D, Hashimoto H (1997) J Mater Sci 32:1657. doi:10.1023/A:1018507512870

    Article  CAS  Google Scholar 

  57. Wu XL, Zhu YT, Wei YG, Wei Q (2009) Phys Rev Lett 103:205504

    Article  CAS  Google Scholar 

  58. Liao XZ, Huang JY, Zhu YT (2003) Philos Mag 83(26):3065

    Article  CAS  Google Scholar 

  59. Zhang LC, Chen GL, Ye HQ (2001) Mater Sci Eng A 299:267

    Article  Google Scholar 

  60. Bracke L, Kestens L, Penning J (2007) Scripta Mater 57:385

    Article  CAS  Google Scholar 

  61. Bracke L, Verbeken K, Kestens L, Penning J (2009) Acta Mater 57:1512

    Article  CAS  Google Scholar 

  62. Astafurova EG, Tukeeva MS, Zakharova GG, Melnikov EV, Maier HJ (2011) Mater Character 62:588

    Article  CAS  Google Scholar 

  63. Bagherpour E, Reihanian M, Ebrahimi R (2012) Mater Des 36:391

    Article  CAS  Google Scholar 

  64. Matoso MS, Figueiredo RB, Kawasaki M, Santos DB, Langdon TG (2012) Scripta Mater 67:649

    Article  CAS  Google Scholar 

  65. Ivanisenko Y, Maclaren I, Sauvage X, Valiev RZ, Fecht HJ (2006) Acta Mater 54:1659

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Science and Technology of China under Grant No. 2012CB932203 of the National Key Basic Research Program and by the Royal Society of the UK under International Joint Project No. JP871294. GFZ is grateful to the Xu Guangqi program 2009 and the 3rd scholarship program of NUST for providing an opportunity to study in the University of Rouen, Groupe de Physique des Matériaux, CNRS (UMR 6634), supervised by Dr. Xavier Sauvage for 6 months. Thanks are due to Chuanting Wang for HPT processing of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G.F., Sauvage, X., Wang, J.T. et al. Evolution of a martensitic structure in a Cu–Al alloy during processing by high-pressure torsion. J Mater Sci 48, 4613–4619 (2013). https://doi.org/10.1007/s10853-013-7153-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7153-8

Keywords

Navigation