Skip to main content

Viscoelasticity and compaction behaviour of the foam-like pomelo (Citrus maxima) peel

Abstract

The pomelo (Citrus maxima) is the largest and heaviest fruit of the genus Citrus and can acquire considerable potential energy as it ripens hanging up to 15 m height. Its thick foam-like structured peel presumably acts inter alia as a shock absorbing layer, protecting the fruit as it impacts on the ground upon being shed. Thereby the peel dissipates kinetic energy by being compacted. In order to elucidate the compaction mechanism of the highly heterogeneous pomelo peel, we conducted incremental stress relaxation tests. Two different models describing the stress relaxation curves, namely, the well-known Maxwell model and the Peleg model were compared and found to be suitable to describe the stress relaxation. As the Peleg model involves only two constants describing the relaxation curves it was the method of choice for interpreting the compaction of the peel samples. The inverse of k 1 reflects the initial decay rate of the relaxation process and k 2 is a measure of the samples’ solidity. The behaviour of these constants with increasing strain indicates the strong influence of the peel samples’ geometry and composition which is attributed to the fruit shape, a gradual changing density of the peel, which can be considered as a stacked array of foam layers differing in density, and the turgescence of the biological cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Scora RW, Nicolson DH (1986) Taxon 35:592

    Article  Google Scholar 

  2. Moore GA (2001) Trends Genet 17:536

    Article  CAS  Google Scholar 

  3. Gross J, Timberg R, Graef M (1983) Bot Gaz 144:401

    Article  CAS  Google Scholar 

  4. Scott FM, Baker KC (1947) Bot Gaz 108:459

    Article  Google Scholar 

  5. Hejnowicz Z, Barthlott W (2005) Am J Bot 92:391

    Article  Google Scholar 

  6. Ford ES (1942) Bot Gaz 104:288

    Article  Google Scholar 

  7. Roth I (1977) In: Linsbauer K (ed) Handbuch der pflanzenanatomie spezieller teil, band X, teil 1—anatomy and morphology. Borntraeger, Berlin

    Google Scholar 

  8. Underhill SJR, McLauchlan RL, Dahler JM (1998) J Texture Stud 29:437

    Article  Google Scholar 

  9. Fischer SF, Thielen M, Loprang RR, Seidel R, Fleck C, Speck T, Bührig-Polaczek A (2010) Adv Eng Mater 12:B658

    Article  Google Scholar 

  10. Barrett HC, Rhodes AM (1976) Syst Bot 1:105

    Article  Google Scholar 

  11. Morton JF (1987) Fruits of warm climates. Creative Resource Systems, Inc., Winterville

    Google Scholar 

  12. Seidel R, Bührig-Polaczek A, Fleck C, Speck T (2009) Impact resistance of hierarchically structured fruit walls and nut shells in view of biomimetic applications. In: Thibaut B (ed) Proceedings of the 6th plant biomechanics conference. ECOFOG, Cayenne

    Google Scholar 

  13. Gyasi S, Fridley RB, Chen P (1981) Trans ASABE 24:0747

    Google Scholar 

  14. Chuma Y, Shiga T, Iwamoto M (1978) J Texture Stud 9:461

    Article  Google Scholar 

  15. Sarig Y, Orlovsky S (1974) J Texture Stud 5:339

    Article  Google Scholar 

  16. Singh KK, Reddy BS (2005) J Food Eng 73:112

    Article  Google Scholar 

  17. Dal Fabbro IM, Linares AW, Abraão RF (2001) Acta Hort 2001(562):319

    Google Scholar 

  18. Fluck RC, Ahmed EM (1974) J Texture Stud 4:494

    Article  Google Scholar 

  19. Sarig Y (1991) Int J Impact Eng 11:251

    Article  Google Scholar 

  20. Pollak N, Peleg M (1980) J Food Sci 45:825

    Article  Google Scholar 

  21. Miltz J, Ramon O (1986) Polym Eng Sci 26:1305

    Article  CAS  Google Scholar 

  22. Peleg M, Pollak N (1982) J Texture Stud 13:1

    Article  Google Scholar 

  23. Niklas KJ (1992) Plant biomechanics—an engineering approach to plant form and function. University of Chicago Press, Chicago

    Google Scholar 

  24. Peleg M (1979) J Food Sci 44:277

    Article  Google Scholar 

  25. Peleg M (1980) J Rheol 24:451

    Article  Google Scholar 

  26. Purkayastha S, Peleg M (1986) J Texture Stud 17:433

    Article  Google Scholar 

  27. R Development Core Team (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  28. Martone PT, Boller M, Burgert I, Dumais J, Edwards J, Mach K, Rowe N, Rueggeberg M, Seidel R, Speck T (2010) Integr Comp Biol 50:888

    Article  Google Scholar 

  29. Corradini MG, Peleg M (2008) In: Aguilera JM, Lillford PJ (eds) Food materials science—principles and practice. Springer, New York

    Google Scholar 

  30. Ben-Zion O, Nussinovitch A (1997) Food Hydrocolloid 11:253

    Article  CAS  Google Scholar 

  31. Moghimi A, Saiedirad MH, Moghadam EG (2011) Int J Food Sci Technol 46:855

    Article  CAS  Google Scholar 

  32. Peleg M, Normand MD (1983) Rheol Acta 22:108

    Article  Google Scholar 

  33. Lee YC, Rosenau JR, Peleg M (1983) J Texture Stud 14:143

    Article  Google Scholar 

  34. Peleg M (1997) Food Sci Technol Int 3:227

    Article  Google Scholar 

  35. Niklas KJ (1989) Am J Bot 76:929

    Article  Google Scholar 

  36. Gibson LJ, Ashby MF, Harley BA (2010) Cellular materials in nature and medicine. University Press, Cambridge

    Google Scholar 

  37. Nilsson SB, Hertz CH, Falk S (1958) Physiol Plantarum 11:818

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank the German Research Foundation (DFG) for funding this project within the priority program 1420 ‘Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Thielen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thielen, M., Speck, T. & Seidel, R. Viscoelasticity and compaction behaviour of the foam-like pomelo (Citrus maxima) peel. J Mater Sci 48, 3469–3478 (2013). https://doi.org/10.1007/s10853-013-7137-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7137-8

Keywords

  • Compressive Strain
  • Maxwell Model
  • Relaxation Curve
  • Sample Height
  • Cork Borer