Advertisement

Journal of Materials Science

, Volume 48, Issue 9, pp 3436–3442 | Cite as

Controlled functionalization of graphene oxide through surface modification with acetone

  • Cheng-Ken Wu
  • Guo-Jian Wang
  • Jin-Feng Dai
Article

Abstract

The facile method to functionalize graphene oxide through surface modification with acetone was studied and improved. The resulting nanomaterials showed variable characteristics as the surface energy could be tailored according to the combination (proportion of H2O to acetone) of mixed solvent under sonication. Stability test and contact angle measurement showed that the treated graphene oxide exhibited different dispersibility and wettability. SEM images of graphene oxide films corroborated the changes in chemical composition of the sheets. FT-IR, XPS, and TGA observation provided direct evidence for chemical composition changes occurred on the surface. The presence of alkyl chain could decrease the surface energy and obviously control the hydrophilicity of the graphene oxide sheets. These results will provide significant guidance for the study of graphene-based bio-materials and nano-composites.

Keywords

Contact Angle Graphene Oxide Thermal Gravimetric Analysis Acetone Molecule Graphene Oxide Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666CrossRefGoogle Scholar
  2. 2.
    Balandin AA (2011) Nat Mater 10:569CrossRefGoogle Scholar
  3. 3.
    Geim AK, Novoselov KS (2007) Nat Mater 6:183CrossRefGoogle Scholar
  4. 4.
    Liao L, Lin YC, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang KL, Huang Y, Duan X (2010) Nature 467:305CrossRefGoogle Scholar
  5. 5.
    Chen C, Rosenblatt S, Bolotin KI, Kalb W, Kim P, Kymissis I, Stormer HL, Heinz TF, Hone J (2009) Nat Nanotechnol 4:861CrossRefGoogle Scholar
  6. 6.
    Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan De, Miao F, Lau CN (2008) Nano Lett 8:902Google Scholar
  7. 7.
    Ma WS, Li J, Deng BJ, Zhao XS (2013) J Mater Sci 48(1):155Google Scholar
  8. 8.
    Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS (2009) Nano Lett 9:1593CrossRefGoogle Scholar
  9. 9.
    Susi T, Kaskela A, Zhu Z, Ayala P, Arenal R, Tian Y, Laiho P, Mali J, Nasibulin AG, Jiang H, Lanzani G, Stephan O, Laasonen K, Pichler T, Loiseau A, Kauppinen EI (2006) Nano Lett 6:1747Google Scholar
  10. 10.
    Guirado-López RA, Sánchez M, Rincón ME (2007) J Phys Chem C 111:57CrossRefGoogle Scholar
  11. 11.
    Chakrapani N, Zhang YM, Nayak SK, Moore JA, Carroll D, Choi YY, Ajayan PM (2003) J Phys Chem B 107:9308CrossRefGoogle Scholar
  12. 12.
    Shih YH, Li MS (2008) J Hazard Mater 154:21CrossRefGoogle Scholar
  13. 13.
    Kazachkin D, Nishimura Y, Irle S, Morokuma K, Vidic RD, Borguet E (2008) Langmuir 24:7848CrossRefGoogle Scholar
  14. 14.
    Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771CrossRefGoogle Scholar
  15. 15.
    Hummers WS, Offeman RE (1958) J Am Chem Soc 80(6):1339CrossRefGoogle Scholar
  16. 16.
    Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, Wilson NR (2011) Angew Chem Int Ed 50(14):3173Google Scholar
  17. 17.
    Rafiee J, Rafiee MA, Yu ZZ, Koratkar N (2010) Adv Mater 22:2151CrossRefGoogle Scholar
  18. 18.
    Wang JY, Jia HB, Tang YY, Ji DD, Sun Y, Gong XD, Ding LF (2013) J Mater Sci 48(4):1571. doi: 10.1007/s10853-012-6913-1 Google Scholar
  19. 19.
    Shahil KMF, Balandin AA (2012) Nano Lett 12:861Google Scholar
  20. 20.
    Goyal V, Balandin AA (2012) Appl Phys Lett 100:073113Google Scholar
  21. 21.
    Shahil KMF, Balandin AA (2012) Solid State Communications 152:1331Google Scholar
  22. 22.
    Lemarchand C, Couvreur P, Vauthier C, Costantin D, Gref R (2003) Int J Pharm 254:77CrossRefGoogle Scholar
  23. 23.
    Kim HS, Park WI, Kang M, Jim HJ (2008) J Phys Chem Solid 69:1209CrossRefGoogle Scholar
  24. 24.
    Wiśniewska M, Chibowski S, Urban T (2012) Thin Solid Films 520:6158CrossRefGoogle Scholar
  25. 25.
    Kim S, Kim Ch, Lee WH, Park SR (2011) J Appl Phys 110:034316CrossRefGoogle Scholar
  26. 26.
    Wiśniewska M (2010) Powder Technol 198:258CrossRefGoogle Scholar
  27. 27.
    Fowkes FM (1997) J Adhes Sci Technol 1:7CrossRefGoogle Scholar
  28. 28.
    Zheng LQ, Li ZR, Bourdo S, Khedir KR, Asar MP, Ryerson CC, Biris AS (2011) Langmuir 27:9936CrossRefGoogle Scholar
  29. 29.
    Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M (2009) Adv Funct Mater 19:2577CrossRefGoogle Scholar
  30. 30.
    Dreyer DR, Park SJ, Ruoff RS (2010) Chem Soc Rev 39:228CrossRefGoogle Scholar
  31. 31.
    Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Nat Chem 2:581CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Civil Engineering Materials, School of Materials Science and EngineeringTongji University, Ministry of EducationShanghaiPeople’s Republic of China

Personalised recommendations