Post-doping via spray-drying: a novel sol–gel process for the batch synthesis of doped LiNi0.5Mn1.5O4 spinel material

Abstract

Powder granulation, Ti-doping and thermal post-treatment have beneficial effects on the electrochemical performance of 5 V LiNi0.5Mn1.5O4 (LNMO) spinel materials. It is shown that spray-drying combined with a post-doping process step is suitable to prepare Ti-doped 5 V materials with a defined and highly reproducible microstructure and chemical composition. Powder granulation via spray-drying and thermal post-treatment provides spherical LNMO granules with nano-crystalline primary particles and a 10 % higher specific discharge capacity compared to pristine LNMO materials due to the presence of the partially ordered P4 3 32 spinel phase and the reduced Mn3+ content. Powder granulation combined with a post-doping process step which utilizes titanium containing sol leads to spherical LiNi0.5Mn1.47Ti0.03O4 granules with uniform nano-crystalline primary particles and a homogenous Ti distribution. The second calcination process after spray-drying as well as the Ti-doping cause a reduced content of the Li x Ni1−x O impurity phase. This facile sol–gel processing leads to doped LiNi0.5Mn1.47Ti0.03O4 with an increased discharge capacity of 18 % compared to the original material. All the granulated materials show a good rate performance up to 10 C due to their particular microstructure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Liu GQ, Wen LY, Liu M (2010) J Solid State Electrochem 14:2191

    Article  CAS  Google Scholar 

  2. 2.

    Goodenough JB, Kim Y (2010) Chem Mater 22:587

    Article  CAS  Google Scholar 

  3. 3.

    Manthiram A (2011) J Phys Chem Lett 2:176

    Article  CAS  Google Scholar 

  4. 4.

    Xu B, Qian D, Wang Z, Meng YS (2012) Mater Sci Eng R Rep 73:51

    Article  CAS  Google Scholar 

  5. 5.

    Zhong Q, Bonakdarpur A, Zhang M, Gao Y, Dahn JR (1997) J Electrochem Soc 144:205

    Article  CAS  Google Scholar 

  6. 6.

    Borgel V, Markevich E, Aurbach D, Semrau G, Schmidt M (2009) J Power Sources 189:331

    Article  CAS  Google Scholar 

  7. 7.

    Yi T-F, Xie Y, Ye M-F, Jiang L-J, Zhu R-S, Zhu Y-R (2011) Ionics 17:383

    Article  CAS  Google Scholar 

  8. 8.

    Wu YP, Rahm E, Holze R (2002) Electrochim Acta 47:3491

    Article  CAS  Google Scholar 

  9. 9.

    Alcántara R, Jaraba M, Lavela P, Tirado JL (2003) Chem Mater 15:2376

    Article  Google Scholar 

  10. 10.

    Kum J-H, Myung S-T, Yoon CS, Oh I-H, Sun Y-K (2004) J Electrochem Soc 151(11):A1911

    Article  Google Scholar 

  11. 11.

    Santhanam R, Rambabu B (2010) J Power Sources 195:5442

    Article  CAS  Google Scholar 

  12. 12.

    Sun Y, Yang Y, Zhan H, Shao H, Zhou Y (2010) J Power Sources 195:4322

    Article  CAS  Google Scholar 

  13. 13.

    Hwang BJ, Wu YW, Venkateswarlu M, Cheng MY, Santhanam R (2009) J Power Sources 193:828

    Article  CAS  Google Scholar 

  14. 14.

    Li D, Ito A, Kobayakawa K, Noguchi H, Sato Y (2006) J Power Sources 161:1241

    Article  CAS  Google Scholar 

  15. 15.

    Hernán L, Morales J, Sánchez L, Santos J (1999) Solid State Ion 118:179

    Article  Google Scholar 

  16. 16.

    Noguchi T, Yamazaki I, Numata T, Shirakata MJ (2007) J Power Sources 174:359

    Article  CAS  Google Scholar 

  17. 17.

    Liu GQ, Yuan WS, Tian YW (2009) J Alloys Compd 484:567

    Article  CAS  Google Scholar 

  18. 18.

    Xiong L, Xu Y, Tao T, Goodenough JB (2012) J Power Sources 199:214

    Article  CAS  Google Scholar 

  19. 19.

    Livage J, Sanchez C, Babonneau F (1998) Molecular precursor routes to inorganic solids. In: Interrante LV, Hampden-Smith MJ (eds) Chemistry of advanced materials: an overview (Ch. 9). Wiley-VCH, New York

    Google Scholar 

  20. 20.

    Schubert U, Hüsing N (2012) Synthesis of inorganic materials (Ch. 4). Wiley-VCH, Weinheim

    Google Scholar 

  21. 21.

    Boyle TJ, Schwartz RW (1994) Comments Inorg Chem 16(5):243

    Article  Google Scholar 

  22. 22.

    Ceder G (2012) MRS Bull 35:693

    Article  Google Scholar 

  23. 23.

    Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) J Mater Chem 21:9938

    Article  CAS  Google Scholar 

  24. 24.

    Bach S, Pereira-Ramos JP, Baffier NJ (1998) Mater Chem 8(1):251

    Article  CAS  Google Scholar 

  25. 25.

    Le M-L-P, Strobel P, Colin CV, Pagnier T, Alloin F (2011) J Phys Chem Solids 72:124

    Article  CAS  Google Scholar 

  26. 26.

    TOPAS version 4.2. Bruker AXS, Karlsruhe

  27. 27.

    Parry KL, Shard AG, Short RD, White RG, Whittle JD, Wright A (2006) Surf Interface Anal 38:1497

    Article  CAS  Google Scholar 

  28. 28.

    Baddour-Hadjean R, Pereira-Ramos J-P (2010) Chem Rev 110:1278

    Article  CAS  Google Scholar 

  29. 29.

    Amdouni N, Zaghib K, Gendron F, Mauger A, Julien CM (2006) Ionics 12:117

    Article  CAS  Google Scholar 

  30. 30.

    Bhaskar A, Bramnik N, Senyshyn A, Fuess H, Ehrenberg HJ (2010) Electrochem Soc 157(6):A689

    Article  CAS  Google Scholar 

  31. 31.

    Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2010) Appl Surf Sci 257:887

    Article  CAS  Google Scholar 

  32. 32.

    Kim J-H, Myung S-T, Yoon CS, Kang SG, Sun Y-K (2004) Chem Mater 16:906

    Article  CAS  Google Scholar 

  33. 33.

    Aklalouch M, Amarilla JM, Rojas RM, Saadoune I, Rojo JM (2010) Electrochem Commun 12:548

    Article  CAS  Google Scholar 

  34. 34.

    Shaju KM, Bruce PG (2008) Dalton Trans 40:5471

    Article  Google Scholar 

  35. 35.

    Lee H-W, Muralidharan P, Mari CM, Ruffo R, Kim DK (2011) J Power Sources 196:10712

    Article  CAS  Google Scholar 

  36. 36.

    Li D, Ito A, Kobayakawa K, Noguchi H, Sato Y (2007) Electrochim Acta 52:1919

    Article  CAS  Google Scholar 

  37. 37.

    Liu J, Manthiram A (2009) J Phys Chem C 113:15073

    Article  CAS  Google Scholar 

  38. 38.

    Xiao J, Chen X, Sushko PV, Sushko ML, Kovarik L, Feng J, Deng Z, Zheng J, Graff GL, Nie Z, Choi D, Liu J, Zhang J-G, Whittingham MS (2012) Adv Mater 24:2109

    Article  CAS  Google Scholar 

  39. 39.

    Bruce PG (ed) (1995) Chemistry of solid state materials, solid state electrochemistry (Ch. 3, 7, 8). Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Federal Ministry of Education and Research (BMBF) and the Ministry of Science, Research and Arts Baden-Württemberg (MWK) for financial support. The authors are grateful for the invaluable support of this work by Florian Stemme (IAM-WPT, SEM images of the spinel powders) and Dr. Thomas Bergfeldt (IAM-AWP, extensive ICP analysis to reveal the exact chemical composition of the spinel materials). Finally the authors would like to acknowledge the help provided by Dr. Stephen Doyle during the data collection at ANKA PDIFF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joachim R. Binder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 192 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schroeder, M., Glatthaar, S., Geßwein, H. et al. Post-doping via spray-drying: a novel sol–gel process for the batch synthesis of doped LiNi0.5Mn1.5O4 spinel material. J Mater Sci 48, 3404–3414 (2013). https://doi.org/10.1007/s10853-012-7127-2

Download citation

Keywords

  • Discharge Capacity
  • High Discharge Capacity
  • Spherical Granule
  • Granulate Material
  • Powder Granulation