Skip to main content
Log in

Investigation of the lithium-rich boundary of the Li1+x Mn2−x O4 cubic spinel phase in air

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Several compositions of the cubic spinel Li1+x Mn2−x O4−δ phase in the lithium–manganese–oxygen (Li–Mn–O) system were synthesized at 700, 750, and 800 °C in air (\( p_{{{\text{O}}_{2} }} \) = 0.2 atm) to investigate the Li-rich boundary of the cubic spinel phase at these temperatures. The lattice parameters of the several compositions were determined by Rietveld analysis of the measured X-ray patterns, and the Li and Mn contents of the samples were measured using inductively coupled plasma with optical emission spectroscopy (ICP-OES). A Vegard-like dependence of the measured lattice parameter of the cubic spinel phase with Li to Mn ratio exists in the homogeneity range of the cubic spinel. This dependence could be used to derive the boundary of the single phase cubic spinel field in the Li–Mn–O system at 700 and 750 °C at \( p_{{{\text{O}}_{2} }} \) = 0.2 atm and to estimate the Li-rich boundary at 800 °C. The results of the present study are compared with two other experimental studies on the homogeneity range of the cubic spinel phase in an attempt to resolve the contradiction between these two studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Berg H, Kelder EM, Thomas JO (1999) J Mater Chem 9:427

    Article  CAS  Google Scholar 

  2. Berg H, Göransson K, Noläng B, Thomas JO (1999) J Mater Chem 9:2813

    Article  CAS  Google Scholar 

  3. Thackeray MM (1997) Prog Solid State Chem 25:1

    Article  CAS  Google Scholar 

  4. Park SH, Ahn HS, Park GJ, Kim J, Lee YS (2008) Mater Chem Phys 112:696

    Article  CAS  Google Scholar 

  5. Yu DYW, Yanagida K (2011) J Electrochem Soc 158(9):A1015

    Article  CAS  Google Scholar 

  6. Park S-H, Sato Y, Kim J-K, Lee Y-S (2007) Mater Chem Phys 102:225

    Article  CAS  Google Scholar 

  7. Tsuji T, Umakoshi H, Yamamura Y (2005) J Phys Chem Solids 66(2–4):283

    Article  CAS  Google Scholar 

  8. Yamada A, Miura K, Hinokuma K, Tanaka M (1995) J Electrochem Soc 142(7):2149

    Article  CAS  Google Scholar 

  9. Paulsen JM, Dahn JR (1999) Chem Mater 11:3065

    Article  CAS  Google Scholar 

  10. Gummow RJ, Kock Ad, Thackeray MM (1994) Solid State Ion 69:59

    Article  CAS  Google Scholar 

  11. Gao Y, Dahn JR (1996) J Electrochem Soc 143(6):1783

    Article  CAS  Google Scholar 

  12. Luo C, Martin M (2007) J Mater Sci 42(6):1955. doi:10.1007/s10853-006-0452-6

    Article  CAS  Google Scholar 

  13. Thackeray MM, Mansuetto MF, Dees DW, Vissers DR (1996) Mater Res Bull 31(2):133

    Article  CAS  Google Scholar 

  14. Massarotti V, Capsoni D, Bini M (2002) Solid State Commun 122:317

    Article  CAS  Google Scholar 

  15. Lutterotti L, Bortolotti M, Ischia G, Lonardelli I, Wenk H-R (2007) Z Kristallogr 26:125

    Article  Google Scholar 

  16. Yonemura M, Yamada A, Kobayashi H, Tabuchi M, Kamiyama T, Kawamoto Y, Kanno R (2004) J Mater Chem 14:1948

    Article  CAS  Google Scholar 

  17. Komaba S, Yabuuchni N, Ikemoto S (2010) J Solid State Chem 183:234

    Article  CAS  Google Scholar 

  18. Ahn D, Song MY (2000) J Electrochem Soc 147(3):874

    Article  CAS  Google Scholar 

  19. Lee YS, Hideshima Y, Sun YK, Yoshio M (2002) J Electroceram 9:209

    Article  CAS  Google Scholar 

  20. Piszora P (2005) J Alloy Compd 401:34

    Article  CAS  Google Scholar 

  21. Son JT, Park KS, Kim HG, Chung HT (2004) J Mater Sci 39:3635. doi:10.1023/B:JMSC.0000030716.52790.96

    Article  CAS  Google Scholar 

  22. Takada T, Enoki H, Hayakawa H, Akiba E (1998) J Solid State Chem 139:290

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the German Research Foundation (DFG) Priority Program 1473 WenDeLib—Materials with New design for Improved Lithium Ion Batteries for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian M. Cupid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cupid, D.M., Lehmann, T., Bergfeldt, T. et al. Investigation of the lithium-rich boundary of the Li1+x Mn2−x O4 cubic spinel phase in air. J Mater Sci 48, 3395–3403 (2013). https://doi.org/10.1007/s10853-012-7126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7126-3

Keywords

Navigation