Journal of Materials Science

, Volume 48, Issue 7, pp 2953–2960 | Cite as

Hybrid porous nanotube crystal networks for nanostructured device applications

  • Alex V. PokropivnyEmail author
  • Sebastian Volz
Energy Materials & Thermoelectrics


A set of new porous materials, namely zeolite nanocage schwarzite-like crystals with the elements of both nanotubes and fullerenes in the structure is proposed as a result of ab initio and density-functional theory calculations. Twelve new Extradiamond phases of boron nitride, carbon, silicon and silicon carbide are calculated as three different hybridized crystals. The details of recently synthesized Explosion-BN (E-BN) phase are highlighted for the first time with electronic structure and vibrational frequency analysis. E-BN is supposed to be sp 2/sp 3-hybridized FAU-zeolite structure with calculated unit cell of 12.177 Å and a band gap of 3.2 eV. Calculated IR bands for E-BN120 cluster and observed experimentally E-BN absorption spectrum are well-correlated with appropriate IR spectra of FAU-zeolite. Armchair and zig-zag nanotubes are classified as (n,n,k) and (n,0,k), respectively, where k is the number of hexagons along the nanotube axis. Novel materials are proposed as (n,m,k)-FTC, where FTC stands for framework type code. We also indicate the possibility of creation of filled hybrid networks of different segment lengths, radii and compositions for thermoelectric and novel device applications.


Zeolite Fullerene Clathrate Boron Nitride Hybridization Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Shevelkov AV, Abramchuk NS (2012) E-MRS spring meeting D3-3Google Scholar
  2. 2.
    He Y, Donadio D, Lee JH, Grossman JC, Galli G (2011) ACS Nano 5:1839CrossRefGoogle Scholar
  3. 3.
    Volz S, Chen G (1999) Appl Phys Lett 75:2056CrossRefGoogle Scholar
  4. 4.
    Bera C, Mingo N, Volz S (2010) Phys Rev Lett 104:115502CrossRefGoogle Scholar
  5. 5.
    Tafti MY, Saleemi M, Toprak MS, Muhammed M (2012) E-MRS spring meeting poster sessionGoogle Scholar
  6. 6.
    Shevelkov AV (2008) Russ Chem Rev 77:1CrossRefGoogle Scholar
  7. 7.
    Baerlocher Ch, McCusker LB, Olson DH (2007) Atlas of zeolite framework types. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Sales BC (2007) Int J Appl Ceram Technol 4:291CrossRefGoogle Scholar
  9. 9.
    Volz S (2010) Thermal nanosystems and nanomaterials. Springer, BerlinGoogle Scholar
  10. 10.
    Férey C, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki IA (2005) Science 309:2040CrossRefGoogle Scholar
  11. 11.
    Lu X, Chen Z (2005) Chem Rev 105:3643CrossRefGoogle Scholar
  12. 12.
    Pokropivny VV, Ivanovskii AL (2008) Russ Chem Rev 10:837CrossRefGoogle Scholar
  13. 13.
    Greshnyakov VA, Belenkov EA (2011) J Exp Theor Phys 113:86CrossRefGoogle Scholar
  14. 14.
    Diudea MV (2005) Nanostructures novel architecture. Nova Science, New YorkGoogle Scholar
  15. 15.
    Connétable D, Timoshevskii V, Masenelli B, Beille J, Marcus J, Barbara B, Saitta AM, Rignanese GM, Mélinon P, Yamanaka S, Blasé X (2003) Phys Rev Lett 91:247001CrossRefGoogle Scholar
  16. 16.
    Ponomareva I, Srivastava D, Menon M (2007) Nano Lett 7:1155CrossRefGoogle Scholar
  17. 17.
    Demkov AA, Sankey OF, Schmidt KE, Adams GB, O’Keeffe M (1994) Phys Rev B 50:17001CrossRefGoogle Scholar
  18. 18.
    Chernozatonskii LA, Richter E, Menon M (2002) Phys Rev B 65:241404RCrossRefGoogle Scholar
  19. 19.
    Zhao Z, Xu B, Wang LM, Zhou XF, He J, Liu Z, Wang HT, Tian Y (2011) ACS Nano 5:7226CrossRefGoogle Scholar
  20. 20.
    Li J, Xia Y, Zhao M, Liu X, Song C, Li L, Li F, Huang B (2007) J Phys Condens Matter 19:346228CrossRefGoogle Scholar
  21. 21.
    Wang Q, Sun Q, Jena P, Kawazoe Y (2009) ACS Nano 3:621CrossRefGoogle Scholar
  22. 22.
    Yong Y, Song B, He P (2011) J Phys Chem C 115:6455CrossRefGoogle Scholar
  23. 23.
    Yong Y, Song B, He P (2011) Phys Chem Chem Phys 13:16182CrossRefGoogle Scholar
  24. 24.
    Mélinon P (2011) SiC cage like based materials. In: Mukherjee M (ed) Silicon carbide: materials, processing and applications in electronic devices. Intech, pp 23–52Google Scholar
  25. 25.
    Ovsyannikova LI, Pokropivny VV, Bekenev VL (2009) Phys Solid State 51:2199CrossRefGoogle Scholar
  26. 26.
    Pokropivny VV, Skorokhod VV, Kurdyumov AV, Oleinik GS, Bartnitskaya TS, Pokropivny AV (1999) Proc SPIE 3790:213CrossRefGoogle Scholar
  27. 27.
    Nagy K, Nagy CL, Katona G, Diudea MV (2010) Fuller, Nanotub, Carbon Nanostruct 18:216CrossRefGoogle Scholar
  28. 28.
    Pokropivny AV (2006) Diam Relat Mater 15:1492CrossRefGoogle Scholar
  29. 29.
    Batsanov SS (2011) Diam Relat Mater 20:660CrossRefGoogle Scholar
  30. 30.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  31. 31.
    Artacho E, Anglada E, Dieguez O, Gale JD, Garcia A, Junquera J, Martin RM, Ordejon P, Pruneda JM, Sanchez-Portal D, Soler JM (2008) J Phys Condens Matter 20:064208CrossRefGoogle Scholar
  32. 32.
    Dinadayalane TC, Leszczynski J (2010) Struct Chem 21:1155CrossRefGoogle Scholar
  33. 33.
    Smirnov KS, Bougeard D (2001) Catal Today 70:243CrossRefGoogle Scholar
  34. 34.
    Batsanov SS, Blohina GE, Deribas AA (1965) J Struct Chem 6:209CrossRefGoogle Scholar
  35. 35.
    Yang X, Li H, Li Y, Lv X, Zou G (2010) J Cryst Growth 312:3434CrossRefGoogle Scholar
  36. 36.
    Wang JB, Wang XL, Zhong CY, Zhang BQ, Huang GW, Yang J (2003) J Mater Res 18:2774CrossRefGoogle Scholar
  37. 37.
    Pokropivny VV, Smolyar AS, Pokropivny AV (2007) Phys Solid State 49:591CrossRefGoogle Scholar
  38. 38.
    Gui X, Li H, Zhang L, Jia Y, Liu L, Li Z, Wei J, Wang K, Zhu H, Tang Z, Wu D, Cao A (2011) ACS Nano 5:4276CrossRefGoogle Scholar
  39. 39.
    Sato Y, Ootsubo M, Yamamoto G, Van Lier G, Terrones M, Hashiguchi S, Kimura H, Okubo A, Motomiya K, Jeyadevan B, Hashida T, Tohji K (2008) ACS Nano 2:348CrossRefGoogle Scholar
  40. 40.
    Pokropivny V, Pokropivny A, Lohmus A, Lohmus R, Kovrygin S, Sylenko P, Partch R, Prilutskii E (2007) Physica E 37:283CrossRefGoogle Scholar
  41. 41.
    Silenko PM, Shlapak AM, Pilipchuk OF, D’yachkov PN, Solonin YM (2011) Inorg Mater 47:1330CrossRefGoogle Scholar
  42. 42.
    Vaseashta A, Dimova-Malinovska D, Marshall JM (2005) Nanostructured and advanced materials for applications in sensor, optoelectronic and photovoltaic technology. Springer, The NetherlandsCrossRefGoogle Scholar
  43. 43.
    Pokropivny VV, Makarov IM, Pokropivny AV (2000) Semicond Phys Quantum Electron Optoelectron 3(4):550Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Laboratoire d’Energétique Moléculaire et Macroscopique, Combustion, UPR CNRS 288Ecole Centrale ParisChâtenay-MalabryFrance
  2. 2.Frantsevich Institute for Problems of Materials ScienceKyivUkraine

Personalised recommendations