Journal of Materials Science

, Volume 48, Issue 7, pp 2986–2996 | Cite as

The effect of microstructure on thermal expansion coefficients in powder-processed Al2Mo3O12

  • Luciana Prates Prisco
  • Carl P. Romao
  • Fernando Rizzo
  • Mary Anne White
  • Bojan A. Marinkovic


Orthorhombic Al2Mo3O12 was investigated as a model anisotropic phase to understand the influence of powder preparation routes and bulk microstructure (mean grain size) on the bulk coefficient of thermal expansion (CTE) and to compare it to the intrinsic CTE of powder samples. A co-precipitation route was used for the synthesis of pure single-phase nanopowders, while a polyvinyl alcohol-assisted sol–gel method was utilized for the synthesis of micron-sized powders. Sintered samples prepared from both powders exhibited different microstructures in terms of mean crystal sizes and porosity. Bulk samples obtained from nanopowders were highly porous and contained crystals of approximately 100-nm diameter, while the bulk pieces produced from the micron-sized powders were denser, contained crystals larger than 5 μm, and showed occasional intergranular and transgranular microcracks. Such different microstructures hugely impact the bulk CTE: the nanometric sample possesses a bulk CTE (0.9 × 10−6 °C−1, from 200 to 700 °C) closer to the instrinsic CTE (2.4 × 10−6 °C−1) than for the micrometric sample, which showed a negative CTE (−2.2 × 10−6 °C−1) from 200 to 620 °C, and an even more negative CTE above 620 °C (−35 × 10−6 °C−1). A finite element analysis showed that the local maximum thermal tensile stresses could be as high as 220 MPa when simulating a temperature drop of 700 °C as an example of thermal treatment following sintering. This tensile stress is expected to exceed the tensile strength of Al2Mo3O12, explaining the origin of microcracks in bulk samples prepared from the micron-sized powders. The thermal behavior of the microcracks leads to differences between the intrinsic and bulk thermal expansion; we show experimentally that such differences can be reduced by nanostructuring.


  1. 1.
    Sosman RB (1927) Properties of silica. Chemical Catalogue Company, New YorkGoogle Scholar
  2. 2.
    Adenstedt H (1936) Ann Physik 26:69CrossRefGoogle Scholar
  3. 3.
    Gibbons DF (1958) Phys Rev 112:136CrossRefGoogle Scholar
  4. 4.
    Sleight AW (1998) Inorg Chem 37:2854CrossRefGoogle Scholar
  5. 5.
    Romao CP, Miller KJ, Whitan CA, White MA, Marinkovic BA (2012) In: Poeppelmeier K (ed) Comprehensive inorganic chemistry 2Google Scholar
  6. 6.
    Miller W, Smith CW, Mackenzie DS, Evans KE (2009) J Mater Sci 44:5441. doi:10.1007/s10853-009-3692-4 CrossRefGoogle Scholar
  7. 7.
    Shi JD, Pu ZJ, Wu K-H, Larkins G (1997) Mater Res Soc Symp Proc 445:229CrossRefGoogle Scholar
  8. 8.
    Sleight AW (1998) Curr Opin Solid State Mater Sci 3:128CrossRefGoogle Scholar
  9. 9.
    Dasgupta N, Sörge E, Butler B, Wen TC, Shetty DK, Cambrea LR, Harris DC (2012) J Mater Sci 47:6286. doi:10.1007/s10853-012-6548-2 CrossRefGoogle Scholar
  10. 10.
    Barrera GD, Bruno JAO, Barron THK, Allan NL (2005) J Phys 17:R217Google Scholar
  11. 11.
    Grima JN, Zammit V, Gatt R (2006) J Malta Chamb Sci (Xjenza) 11:17Google Scholar
  12. 12.
    Evans JSO, Mary TA, Vogt T, Subramanian MA, Sleight AW (1996) Chem Mater 8:2809CrossRefGoogle Scholar
  13. 13.
    Evans JSO, Mary TA, Sleight AW (1997) J Solid State Chem 133:580CrossRefGoogle Scholar
  14. 14.
    Sumithra S, Umarji AM (2004) Solid State Sci 6:1313CrossRefGoogle Scholar
  15. 15.
    Sumithra S, Umarji AM (2005) Mater Res Bull 40:167CrossRefGoogle Scholar
  16. 16.
    Sleight AW (2003) Nature 425:674CrossRefGoogle Scholar
  17. 17.
    Srikanth V, Subbarao EC (1992) Ceram Int 18:251CrossRefGoogle Scholar
  18. 18.
    Buessem WR, Kreigel WW, Palmour DH III (1961) Mechanical properties of engineering ceramics. Interscience, New YorkGoogle Scholar
  19. 19.
    Mary TA, Sleight AW (1999) J Mater Res 14:912CrossRefGoogle Scholar
  20. 20.
    Parker FJ, Rice RW (1989) J Am Ceram Soc 72(12):2364CrossRefGoogle Scholar
  21. 21.
    Ari M, Jardim PM, Marinkovic BA, Rizzo F, Ferreira FF (2008) J Solid State Chem 181:1472CrossRefGoogle Scholar
  22. 22.
    Manning WR, Hunter O Jr, Calderwood FW, Stacy WR (1972) J Am Ceram Soc 55:342CrossRefGoogle Scholar
  23. 23.
    Kreher WS (1996) Comp Mater Sci 7:147CrossRefGoogle Scholar
  24. 24.
    Blendell JE, Coble RL (1982) J Am Ceram Soc 65:174CrossRefGoogle Scholar
  25. 25.
    Qing M, Clarke DR (1994) J Am Ceram Soc 77:298CrossRefGoogle Scholar
  26. 26.
    Zimmermann A, Fuller ER, Rödel J (1999) J Am Ceram Soc 82:3155CrossRefGoogle Scholar
  27. 27.
    Nassau K, Levinstein HJ, Loiacono GM (1965) J Phys Chem Solids 26:1805CrossRefGoogle Scholar
  28. 28.
    Carter B, Norton MG (2007) Ceramic materials science and engineering. Springer, New YorkGoogle Scholar
  29. 29.
  30. 30.
    Kingery WD, Bowen HK, Uhlmann RD (1960) Introduction to ceramics. Wiley, New YorkGoogle Scholar
  31. 31.
    Rice RW (1993) J Mater Sci 28:2187. doi:10.1007/BF00367582 CrossRefGoogle Scholar
  32. 32.
    Miller KJ, Johnson MB, Marinkovic BA, White MA (2012) Solid State Commun 152:1748CrossRefGoogle Scholar
  33. 33.
    Drymiotis FR, Ledbetter H, Betts JB, Kimura T, Lashley JC, Migliori A, Ramirez AP, Duijn GR, Kowach J (2004) Phys Rev Lett 93:025502CrossRefGoogle Scholar
  34. 34.
    Zhecheva E, Stoyanova R, Ivanova S, Nikolov V (2010) Solid State Sci 12:2010CrossRefGoogle Scholar
  35. 35.
    Lu C-H, Saha SK (2001) J Sol Gel Sci Technol 20:27CrossRefGoogle Scholar
  36. 36.
    Saha SK, Pramanik P (1997) Nanostruct Mater 8:29CrossRefGoogle Scholar
  37. 37.
    Zhang Z, Liu J, Wang F, Kong J, Wang X (2011) Ceram Int l37:2549CrossRefGoogle Scholar
  38. 38.
    Ari M, Miller KJ, Marinkovic BA, Jardim PM, Avillez RR, Rizzo F, White MA (2011) J Sol Gel Technol 58:121CrossRefGoogle Scholar
  39. 39.
    Domenichini B, Gillot B, Bouet L, Tailhades P, Rousset A (1993) J Solid State Chem 103:16CrossRefGoogle Scholar
  40. 40.
    Clark GM, Doyle WP (1966) Spectrochim Acta 22:1441CrossRefGoogle Scholar
  41. 41.
    Tarte P (1967) Spectrochim Acta 23A:2127Google Scholar
  42. 42.
    Mo C, Yuan Z, Zhang L, Xie C (1993) Nanostruct Mater 2:47CrossRefGoogle Scholar
  43. 43.
    Manning WR, Hunter M (1973) J Am Ceram Soc 56:602Google Scholar
  44. 44.
    Mittal R, Chaplot SL, Schober H, Kolesnikov AI, Loong C-K, Wilkinson AP, Lind C (2004) Phys Rev B 70(214303):1Google Scholar
  45. 45.
    Arora AK, Yag T, Miyajima N, Mary TA (2005) J App Phys 97(013508):1Google Scholar
  46. 46.
    Han SS, Goddard WA III (2007) J Phys Chem C 111:15185CrossRefGoogle Scholar
  47. 47.
    Chupas PJ, Chapman KW (2007) J Am Chem Soc 129:10090CrossRefGoogle Scholar
  48. 48.
    Rice RW (1997) J Mater Sci 32:1673. doi:10.1023/A:1018511613779 CrossRefGoogle Scholar
  49. 49.
    Griffith AA (1921) Philos Trans R Soc London Ser A:169–198Google Scholar
  50. 50.
    Kuszyk JA, Bradt RC (1973) J Am Ceram Soc 56:420CrossRefGoogle Scholar
  51. 51.
    Sikka SK (2004) J Phys 16:S1033Google Scholar
  52. 52.
    Varga T, Wilkinson AP, Lind C, Bassett WA, Zha C-S (2005) J Phys 17:4271–4283Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Luciana Prates Prisco
    • 1
  • Carl P. Romao
    • 2
    • 3
  • Fernando Rizzo
    • 1
  • Mary Anne White
    • 2
    • 3
    • 4
  • Bojan A. Marinkovic
    • 1
  1. 1.Departamento de Engenharia de MateriaisPontifícia Universidade Católica de Rio de Janeiro (PUC-Rio)Rio de JaneiroBrazil
  2. 2.Department of ChemistryDalhousie UniversityHalifaxCanada
  3. 3.Institute for Research in MaterialsDalhousie UniversityHalifaxCanada
  4. 4.Department of Physics and Atmospheric SciencesDalhousie UniversityHalifaxCanada

Personalised recommendations