Characterization of the cure shrinkage, reaction kinetics, bulk modulus and thermal conductivity of thermoset resin from a single experiment

Abstract

The use of thermoset composites has increased remarkably during the recent past in naval, automobile and aeronautical applications. Despite superior mechanical behaviour, certain problems, e.g. shape distortion, fibre buckling and matrix cracking, are induced in composite part, especially during fabrication due to the heterogeneous nature of such materials. Excellent control of the curing process is required for production of a composite part with required shape and properties. For an accurate simulation of the curing process, exact knowledge of cure-dependent polymer properties and heat transfer is needed. Several instruments are required to identify these parameters, which is time consuming, and costly. In the present study, results on the simultaneous characterization of bulk modulus, chemical shrinkage and degree of cure of vinylester resin using PVT-α device are presented. Determination of cure and temperature-dependent thermal conductivity of the matrix using the same device is also discussed. The obtained results are compared with the available literature results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Wisnom MR, Gigliotti M, Ersoy N, Campbell M, Potter KD (2006) Compos A Appl Sci Manuf 37(4):522–529

    Article  Google Scholar 

  2. 2.

    Nawab Y, Jacquemin F, Casari P, Boyard N, Sobotka V (2012) J Compos Mater. doi:10.1177/0021998312440130

    Google Scholar 

  3. 3.

    Genidy MS, Madhukar MS, Russell JD (1999) J Reinf Plast Compos 18(14):1304–1321. doi:10.1177/073168449901801403

    CAS  Google Scholar 

  4. 4.

    Motahhari S, Cameron J (1999) J Reinf Plast Compos 18(11):1011–1020. doi:10.1177/073168449901801104

    CAS  Google Scholar 

  5. 5.

    Schick C (2009) Anal Bioanal Chem 395(6):1589–1611. doi:10.1007/s00216-009-3169-y

    Article  CAS  Google Scholar 

  6. 6.

    Nawab Y, Tardif X, Boyard N, Sobotka V, Casari P, Jacquemin F (2012) Compos Sci Technol 73:81–87. doi:10.1016/j.compscitech.2012.09.018

    Article  CAS  Google Scholar 

  7. 7.

    Boyard N, Vayer M, Sinturel C, Erre R, Delaunay D (2003) J Appl Polym Sci 88(5):1258–1267

    Article  CAS  Google Scholar 

  8. 8.

    Hoa SV, Ouellette P, Ngo TD (2009) J Compos Mater 43(7):783–803. doi:10.1177/0021998308102035

    Article  CAS  Google Scholar 

  9. 9.

    Li C, Potter K, Wisnom MR, Stringer G (2004) Compos Sci Technol 64(1):55–64

    Article  CAS  Google Scholar 

  10. 10.

    Snow AW, Armistead JP (1994) J Appl Polym Sci 52(3):401–411

    Article  CAS  Google Scholar 

  11. 11.

    Yan-Jyi H, Chiou-Ming L (1996) Polymer 37:401–412

    Article  Google Scholar 

  12. 12.

    Mark K, Lee LJ (1992) J Appl Polym Sci 45(1):37–50

    Article  Google Scholar 

  13. 13.

    Mark K, Shailesh M, Lee LJ (1995) Polym Eng Sci 35(10):823–836

    Article  Google Scholar 

  14. 14.

    Madhukar MS, Genidy MS, Russell JD (2000) J Compos Mater 34(22):1882–1904. doi:10.1106/hucy-dy2b-2n42-ujbx

    Article  CAS  Google Scholar 

  15. 15.

    Parlevliet PP, Bersee HEN, Beukers A (2010) Polym Testing 29(4):433–439

    Article  CAS  Google Scholar 

  16. 16.

    Shah DU, Schubel PJ (2012) Polym Test 29(6):629–639

    Google Scholar 

  17. 17.

    Schoch KF, Panackal PA, Frank PP (2004) Thermochim Acta 417(1):115–118

    Article  CAS  Google Scholar 

  18. 18.

    Parlevliet PP, Bersee HEN, Beukers A (2010) Polym Testing 29(3):291–301

    Article  CAS  Google Scholar 

  19. 19.

    Antonucci V, Giordano M, Cusano A, Nasser J, Nicolais L (2006) Compos Sci Technol 66(16):3273–3280. doi:10.1016/j.compscitech.2005.07.009

    Article  CAS  Google Scholar 

  20. 20.

    Karalekas D, Cugnoni J, Botsis J (2008) Compos A Appl Sci Manuf 39(7):1118–1127. doi:10.1016/j.compositesa.2008.04.010

    Article  Google Scholar 

  21. 21.

    Giordano M, Laudati A, Nasser J, Nicolais L, Cusano A, Cutolo A (2004) Sens Actuators A 113(2):166–173. doi:10.1016/j.sna.2004.02.033

    Article  Google Scholar 

  22. 22.

    Vacher S, Molimard J, Gagnaire H, Vautrin A (2003) Polym Polym Compos 12(4):269–276

    Google Scholar 

  23. 23.

    Tai HJ, Chou HL (2000) Eur Polymer J 36:2213–2219

    Article  CAS  Google Scholar 

  24. 24.

    Lange J, Toll S, Månson J-AE, Hult A (1995) Polymer 36(16):3135–3141

    Article  CAS  Google Scholar 

  25. 25.

    Yang DG, Jansen KMB, Ernst LJ, Zhang GQ, Bressers HJL, Janssen JHJ (2007) Microelectron Reliab 47(2–3):233–239. doi:10.1016/j.microrel.2006.09.031

    CAS  Google Scholar 

  26. 26.

    Boyard N, Vayer M, Sinturel C, Erre R, Delaunay D (2004) J Appl Polym Sci 92(5):2976–2988. doi:10.1002/app.20312

    Article  CAS  Google Scholar 

  27. 27.

    Abou Msallem Y, Jacquemin F, Boyard N, Poitou A, Delaunay D, Chatel S (2010) Compos A Appl Sci Manuf 41(1):108–115. doi:10.1016/j.compositesa.2009.09.025

    Article  Google Scholar 

  28. 28.

    Holst M, Schänzlin K, Wenzel M, Xu J, Lellinger D, Alig I (2005) J Polym Sci Part B Polym Phys 43(17):2314–2325. doi:10.1002/polb.20519

    Article  CAS  Google Scholar 

  29. 29.

    Hearn EJ (1997) Mechanics of materials 1, 3rd edn. Butterworth Heinemann, Oxford, UK

    Google Scholar 

  30. 30.

    Yang BJ, Kim BR, Lee HK (2012) Acta Mech 223(6):1307–1321. doi:10.1007/s00707-012-0651-y

    Article  Google Scholar 

  31. 31.

    Gigliottia M, Molimard J, Jacquemin F, Vautrin A (2006) Compos A Appl Sci Manuf 37(4):624–629

    Article  Google Scholar 

  32. 32.

    Nawab Y, Jacquemin F, Casari P, Boyard N, Sobotka V (2012) Key Eng Mater 504:1145–1150

    Article  Google Scholar 

  33. 33.

    Mott PH, Dorgan JR, Roland CM (2008) J Sound Vib 312(4–5):572–575. doi:10.1016/j.jsv.2008.01.026

    Article  Google Scholar 

  34. 34.

    Dixon S, Jaques D, Edwards C, Palmer SB (2003) AIP Conf Proc 657(1):1049–1055. doi:10.1063/1.1570249

    Article  CAS  Google Scholar 

  35. 35.

    Plepys AR, Farris RJ (1990) Polymer 31(10):1932–1936. doi:10.1016/0032-3861(90)90019-u

    Article  CAS  Google Scholar 

  36. 36.

    Lindrose A (1978) Exp Mech 18(6):227–232. doi:10.1007/bf02328418

    Article  Google Scholar 

  37. 37.

    David S (2001) Meas Sci Technol 12(12):R89

    Article  Google Scholar 

  38. 38.

    Bailleul JL, Delaunay D, Jarny Y (1996) J Reinf Plast Compos 15(5):479–496. doi:10.1177/073168449601500503

    CAS  Google Scholar 

  39. 39.

    Nawab Y, Boyard N, Sobotka V, Casari P, Jacquemin F (2012) Key Eng Mater 504:1129–1134

    Google Scholar 

  40. 40.

    Boyard N, Millischer A, Sobotka V, Bailleul JL, Delaunay D (2007) Compos Sci Technol 67(6):943–954

    Article  CAS  Google Scholar 

  41. 41.

    Beck JV, Blackwell B, Clair CS (1985) Inverse heat conduction. Wiley, New York

  42. 42.

    Nawab Y, Boyard N, Sobotka V, Casari P, Jacquemin F (2011) Adv Mater Res 326:19–28

    Article  CAS  Google Scholar 

  43. 43.

    Lee JH, Lee JW (1994) Polym Eng Sci 34(9):742–749. doi:10.1002/pen.760340907

    Article  CAS  Google Scholar 

  44. 44.

    Tardif X, Agazzi A, Sobotka V, Boyard N, Jarny Y, Delaunay D (2012) Polym Testing 31(6):819–827. doi:10.1016/j.polymertesting.2012.05.008

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yasir Nawab or Frédéric Jacquemin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nawab, Y., Casari, P., Boyard, N. et al. Characterization of the cure shrinkage, reaction kinetics, bulk modulus and thermal conductivity of thermoset resin from a single experiment. J Mater Sci 48, 2394–2403 (2013). https://doi.org/10.1007/s10853-012-7026-6

Download citation

Keywords

  • Bulk Modulus
  • Heat Flux Density
  • Electromagnetic Acoustic Transducer
  • Heat Flux Sensor
  • Chemical Shrinkage