Journal of Materials Science

, Volume 48, Issue 6, pp 2394–2403 | Cite as

Characterization of the cure shrinkage, reaction kinetics, bulk modulus and thermal conductivity of thermoset resin from a single experiment



The use of thermoset composites has increased remarkably during the recent past in naval, automobile and aeronautical applications. Despite superior mechanical behaviour, certain problems, e.g. shape distortion, fibre buckling and matrix cracking, are induced in composite part, especially during fabrication due to the heterogeneous nature of such materials. Excellent control of the curing process is required for production of a composite part with required shape and properties. For an accurate simulation of the curing process, exact knowledge of cure-dependent polymer properties and heat transfer is needed. Several instruments are required to identify these parameters, which is time consuming, and costly. In the present study, results on the simultaneous characterization of bulk modulus, chemical shrinkage and degree of cure of vinylester resin using PVT-α device are presented. Determination of cure and temperature-dependent thermal conductivity of the matrix using the same device is also discussed. The obtained results are compared with the available literature results.


  1. 1.
    Wisnom MR, Gigliotti M, Ersoy N, Campbell M, Potter KD (2006) Compos A Appl Sci Manuf 37(4):522–529CrossRefGoogle Scholar
  2. 2.
    Nawab Y, Jacquemin F, Casari P, Boyard N, Sobotka V (2012) J Compos Mater. doi:10.1177/0021998312440130 Google Scholar
  3. 3.
    Genidy MS, Madhukar MS, Russell JD (1999) J Reinf Plast Compos 18(14):1304–1321. doi:10.1177/073168449901801403 Google Scholar
  4. 4.
    Motahhari S, Cameron J (1999) J Reinf Plast Compos 18(11):1011–1020. doi:10.1177/073168449901801104 Google Scholar
  5. 5.
    Schick C (2009) Anal Bioanal Chem 395(6):1589–1611. doi:10.1007/s00216-009-3169-y CrossRefGoogle Scholar
  6. 6.
    Nawab Y, Tardif X, Boyard N, Sobotka V, Casari P, Jacquemin F (2012) Compos Sci Technol 73:81–87. doi:10.1016/j.compscitech.2012.09.018 CrossRefGoogle Scholar
  7. 7.
    Boyard N, Vayer M, Sinturel C, Erre R, Delaunay D (2003) J Appl Polym Sci 88(5):1258–1267CrossRefGoogle Scholar
  8. 8.
    Hoa SV, Ouellette P, Ngo TD (2009) J Compos Mater 43(7):783–803. doi:10.1177/0021998308102035 CrossRefGoogle Scholar
  9. 9.
    Li C, Potter K, Wisnom MR, Stringer G (2004) Compos Sci Technol 64(1):55–64CrossRefGoogle Scholar
  10. 10.
    Snow AW, Armistead JP (1994) J Appl Polym Sci 52(3):401–411CrossRefGoogle Scholar
  11. 11.
    Yan-Jyi H, Chiou-Ming L (1996) Polymer 37:401–412CrossRefGoogle Scholar
  12. 12.
    Mark K, Lee LJ (1992) J Appl Polym Sci 45(1):37–50CrossRefGoogle Scholar
  13. 13.
    Mark K, Shailesh M, Lee LJ (1995) Polym Eng Sci 35(10):823–836CrossRefGoogle Scholar
  14. 14.
    Madhukar MS, Genidy MS, Russell JD (2000) J Compos Mater 34(22):1882–1904. doi:10.1106/hucy-dy2b-2n42-ujbx CrossRefGoogle Scholar
  15. 15.
    Parlevliet PP, Bersee HEN, Beukers A (2010) Polym Testing 29(4):433–439CrossRefGoogle Scholar
  16. 16.
    Shah DU, Schubel PJ (2012) Polym Test 29(6):629–639Google Scholar
  17. 17.
    Schoch KF, Panackal PA, Frank PP (2004) Thermochim Acta 417(1):115–118CrossRefGoogle Scholar
  18. 18.
    Parlevliet PP, Bersee HEN, Beukers A (2010) Polym Testing 29(3):291–301CrossRefGoogle Scholar
  19. 19.
    Antonucci V, Giordano M, Cusano A, Nasser J, Nicolais L (2006) Compos Sci Technol 66(16):3273–3280. doi:10.1016/j.compscitech.2005.07.009 CrossRefGoogle Scholar
  20. 20.
    Karalekas D, Cugnoni J, Botsis J (2008) Compos A Appl Sci Manuf 39(7):1118–1127. doi:10.1016/j.compositesa.2008.04.010 CrossRefGoogle Scholar
  21. 21.
    Giordano M, Laudati A, Nasser J, Nicolais L, Cusano A, Cutolo A (2004) Sens Actuators A 113(2):166–173. doi:10.1016/j.sna.2004.02.033 CrossRefGoogle Scholar
  22. 22.
    Vacher S, Molimard J, Gagnaire H, Vautrin A (2003) Polym Polym Compos 12(4):269–276Google Scholar
  23. 23.
    Tai HJ, Chou HL (2000) Eur Polymer J 36:2213–2219CrossRefGoogle Scholar
  24. 24.
    Lange J, Toll S, Månson J-AE, Hult A (1995) Polymer 36(16):3135–3141CrossRefGoogle Scholar
  25. 25.
    Yang DG, Jansen KMB, Ernst LJ, Zhang GQ, Bressers HJL, Janssen JHJ (2007) Microelectron Reliab 47(2–3):233–239. doi:10.1016/j.microrel.2006.09.031 Google Scholar
  26. 26.
    Boyard N, Vayer M, Sinturel C, Erre R, Delaunay D (2004) J Appl Polym Sci 92(5):2976–2988. doi:10.1002/app.20312 CrossRefGoogle Scholar
  27. 27.
    Abou Msallem Y, Jacquemin F, Boyard N, Poitou A, Delaunay D, Chatel S (2010) Compos A Appl Sci Manuf 41(1):108–115. doi:10.1016/j.compositesa.2009.09.025 CrossRefGoogle Scholar
  28. 28.
    Holst M, Schänzlin K, Wenzel M, Xu J, Lellinger D, Alig I (2005) J Polym Sci Part B Polym Phys 43(17):2314–2325. doi:10.1002/polb.20519 CrossRefGoogle Scholar
  29. 29.
    Hearn EJ (1997) Mechanics of materials 1, 3rd edn. Butterworth Heinemann, Oxford, UKGoogle Scholar
  30. 30.
    Yang BJ, Kim BR, Lee HK (2012) Acta Mech 223(6):1307–1321. doi:10.1007/s00707-012-0651-y CrossRefGoogle Scholar
  31. 31.
    Gigliottia M, Molimard J, Jacquemin F, Vautrin A (2006) Compos A Appl Sci Manuf 37(4):624–629CrossRefGoogle Scholar
  32. 32.
    Nawab Y, Jacquemin F, Casari P, Boyard N, Sobotka V (2012) Key Eng Mater 504:1145–1150CrossRefGoogle Scholar
  33. 33.
    Mott PH, Dorgan JR, Roland CM (2008) J Sound Vib 312(4–5):572–575. doi:10.1016/j.jsv.2008.01.026 CrossRefGoogle Scholar
  34. 34.
    Dixon S, Jaques D, Edwards C, Palmer SB (2003) AIP Conf Proc 657(1):1049–1055. doi:10.1063/1.1570249 CrossRefGoogle Scholar
  35. 35.
    Plepys AR, Farris RJ (1990) Polymer 31(10):1932–1936. doi:10.1016/0032-3861(90)90019-u CrossRefGoogle Scholar
  36. 36.
    Lindrose A (1978) Exp Mech 18(6):227–232. doi:10.1007/bf02328418 CrossRefGoogle Scholar
  37. 37.
    David S (2001) Meas Sci Technol 12(12):R89CrossRefGoogle Scholar
  38. 38.
    Bailleul JL, Delaunay D, Jarny Y (1996) J Reinf Plast Compos 15(5):479–496. doi:10.1177/073168449601500503 Google Scholar
  39. 39.
    Nawab Y, Boyard N, Sobotka V, Casari P, Jacquemin F (2012) Key Eng Mater 504:1129–1134Google Scholar
  40. 40.
    Boyard N, Millischer A, Sobotka V, Bailleul JL, Delaunay D (2007) Compos Sci Technol 67(6):943–954CrossRefGoogle Scholar
  41. 41.
    Beck JV, Blackwell B, Clair CS (1985) Inverse heat conduction. Wiley, New YorkGoogle Scholar
  42. 42.
    Nawab Y, Boyard N, Sobotka V, Casari P, Jacquemin F (2011) Adv Mater Res 326:19–28CrossRefGoogle Scholar
  43. 43.
    Lee JH, Lee JW (1994) Polym Eng Sci 34(9):742–749. doi:10.1002/pen.760340907 CrossRefGoogle Scholar
  44. 44.
    Tardif X, Agazzi A, Sobotka V, Boyard N, Jarny Y, Delaunay D (2012) Polym Testing 31(6):819–827. doi:10.1016/j.polymertesting.2012.05.008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Laboratoire de Thermocinétique de NantesLUNAM Université, Université de NantesNantes Cedex 3France
  2. 2.Institut de Recherche en Génie Civil et MécaniqueLUNAM Université, Université de NantesSaint-NazaireFrance

Personalised recommendations