Journal of Materials Science

, Volume 48, Issue 5, pp 2277–2283 | Cite as

Adsorption of CH3S and CF3S on Pt(111) surface: a density functional theory study

  • Y. Cardona Quintero
  • H. Zhu
  • R. RamprasadEmail author


Density functional theory calculations have been performed to study binding modes of adsorbed CX3S (X = H and F) on Pt(111) for a large range of adsorbate coverages and the consequent work function shifts. We find that these properties are all strongly correlated to the surface coverage. Depending on the molecular coverage on Pt surface, the work function shift may be as large as 0.7 eV for Pt–CH3S and 1.5 eV for Pt–CF3S with respect to the clean surface value. Two factors contribute to the work function shift: the charge transfer between the molecule and the surface, and the molecular dipole moment. While the charge transfer contribution always tend to decrease the work function, the molecular dipole moment contribution for the CH3S and CF3S cases are oppositely directed. Thus, appropriate choices of molecular components and control of surface coverage would be effective techniques to tune the work function of the metal surfaces.


Tilt Angle Work Function Adsorption Energy Molecular Dipole Moment LEED Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support of this study through a Grant from the National Science Foundation (NSF) and computational support through a NSF Teragrid Resource Allocation are gratefully acknowledged. Helpful discussions with Prof. Ramanath (RPI) are also gratefully acknowledged.


  1. 1.
    Schreiber F (2000) Prog Surf Sci 65:151CrossRefGoogle Scholar
  2. 2.
    Grill L (2008) J Phys Condens Matter 20:053001CrossRefGoogle Scholar
  3. 3.
    Li Z, Chang S, Williams RS (2003) Langmuir 19:6744CrossRefGoogle Scholar
  4. 4.
    Stammer X, Tonigold K, Bashir A, Kfer D, Shekhah O, Hlsbusch C, Kind M, Gross A, Wll C (2010) Phys Chem Chem Phys 12:6445CrossRefGoogle Scholar
  5. 5.
    Rusu PC, Brocks G (2006) Phys Rev B 74:073414CrossRefGoogle Scholar
  6. 6.
    Kucera J, Gross A (2008) Langmuir 24:13985CrossRefGoogle Scholar
  7. 7.
    Rusu PC, Giovannetti G, Weijtens C, Coehoorn R, Brocks G (2009) J Phys Chem C 113:9974CrossRefGoogle Scholar
  8. 8.
    Maksymovych P, Sorescu DC, Yates JT Jr (2006) J Phys Chem B 110:21161CrossRefGoogle Scholar
  9. 9.
    Karhanek D, Bucko T, Hafner J (2010) J Phys Condens Matter 22:265005CrossRefGoogle Scholar
  10. 10.
    Ghiringhelli LM, Caputo R, Site LD (2007) J Phys Condens Matter 19:176004CrossRefGoogle Scholar
  11. 11.
    Ohara M, Kim Y, Kawai M (2006) Jpn J Appl Phys 45:2022CrossRefGoogle Scholar
  12. 12.
    Lee S, Park J, Ragan R, Kim S, Lee Z, Lim DK, Ohlberg DAA, Williams RS (2006) J Am Chem Soc 128:5745CrossRefGoogle Scholar
  13. 13.
    Jiao J, Bu SY, Wang GC, Bu XH (2008) J Mol Struct (Theochem) 862:80CrossRefGoogle Scholar
  14. 14.
    Rusu PC, Giovannetti G, Brocks G (2007) J Phys Chem C 111:14448CrossRefGoogle Scholar
  15. 15.
    Boer B, Hadipour A, Mandoc MM, Woudenbergh T, Blom PWM (2005) Adv Mater 17:621CrossRefGoogle Scholar
  16. 16.
    Campbell H, Rubin S, Zawodzinski TA, Kress JD, Martin RL, Smith DL (1996) Phys Rev B 54:14321CrossRefGoogle Scholar
  17. 17.
    Zehner RW, Parsons BF, Hsung RP, Sita LR (1999) Langmuir 15:1121CrossRefGoogle Scholar
  18. 18.
    Alloway DM, Hofmann H, Smith DL, Gruhn NE, Graham AL, Colorado R Jr, Wysocki VH, Lee TR, Lee PA, Armstrong NR (2003) J Phys Chem B 107:11690CrossRefGoogle Scholar
  19. 19.
    Rusu PC, Brocks G (2006) J Phys Chem B 110:22628CrossRefGoogle Scholar
  20. 20.
    Lee JJ, Fisher CJ, Bittencourt C, Woodruff DP, Chan ASY, Jones RG (2002) Surf Sci 516:1CrossRefGoogle Scholar
  21. 21.
    Kim SS, Kim Y, Kim HI, Lee TR, Perry SS, Rabalais JW (1998) J Chem Phys 109:9574CrossRefGoogle Scholar
  22. 22.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  23. 23.
    Grimme S (2006) J Comp Chem 27:1787CrossRefGoogle Scholar
  24. 24.
    Hsu YC, Liu X, Miller TA (1989) J Chem Phys 90:6852CrossRefGoogle Scholar
  25. 25.
    Zhu H, M. Aindow M, Ramprasad R (2009) Phys Rev B 80:201406; Zhu H, Ramprasad R (2011) J Appl Phys 109:083719CrossRefGoogle Scholar
  26. 26.
    El Bouzaidi RD, El Hammadi A, Boutalib A, El Mouhtadi M (2000) J Mol Struc (Theochem) 497:197CrossRefGoogle Scholar
  27. 27.
    Lide DR (2001) CRC handbook of chemistry and physics, 81st edn. CRC Press LLC, Boca RatonGoogle Scholar
  28. 28.
    Yang MC, Williamson JM, Miller TA (1997) J Mol Spectrosc 186:1CrossRefGoogle Scholar
  29. 29.
    Marenich AV, Boggs JE (2006) Int J Quantum Chem 106:2609CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Chemical, Materials and Biomolecular EngineeringInstitute of Materials Science, University of ConnecticutStorrsUSA

Personalised recommendations