Reduction of nickel oxide particles by hydrogen studied in an environmental TEM

In situ reduction of nickel oxide (NiO) particles is performed under 1.3 mbar of hydrogen gas (H2) in an environmental transmission electron microscope (ETEM). Images, diffraction patterns and electron energy-loss spectra (EELS) are acquired to monitor the structural and chemical evolution of the system during reduction, whilst increasing the temperature. Ni nucleation on NiO is either observed to be epitaxial or to involve the formation of randomly oriented grains. The growth of Ni crystallites and the movement of interfaces result in the formation of pores within the NiO grains to accommodate the volume shrinkage associated with the reduction. Densification is then observed when the sample is nearly fully reduced. The reaction kinetics is obtained using EELS by monitoring changes in the shapes of the Ni L2,3 white lines. The activation energy for NiO reduction is calculated from the EELS data using both a physical model-fitting technique and a model-independent method. The results of the model-fitting procedure suggest that the reaction is described by Avrami models (whereby the growth and impingement of Ni domains control the reaction), in agreement with the ETEM observations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Kung HH (1989) Transition metal oxides: surface chemistry and catalysis. Elsevier, New York

    Google Scholar 

  2. 2.

    Thomas JM, Thomas WJ (1996) Principles and practice of heterogeneous catalysis. VCH, New York

    Google Scholar 

  3. 3.

    Delmon B (1997) Handbook of heterogeneous catalysis. Wiley VCH, New York

    Google Scholar 

  4. 4.

    Furstenau RP, McDougall G, Langell MA (1985) Surf Sci 150(1):55

    Article  CAS  Google Scholar 

  5. 5.

    Lescop B, Jay JP, Fanjoux G (2004) Surf Sci 548(1–3):83

    Article  CAS  Google Scholar 

  6. 6.

    Hidayat T, Rhamdhani MA, Jak E, Hayes PC (2008) Miner Eng 21(2):157

    Article  CAS  Google Scholar 

  7. 7.

    Hidayat T, Rhamdhani MA, Jak E, Hayes PC (2009) Metall Mater Trans B 40(4):462

    Article  Google Scholar 

  8. 8.

    Hidayat T, Rhamdhani MA, Jak E, Hayes PC (2009) Metall Mater Trans B 40(4):474

    Article  Google Scholar 

  9. 9.

    Hidayat T, Rhamdhani MA, Jak E, Hayes PC (2009) Metall Mater Trans B 40(1):1

    Article  Google Scholar 

  10. 10.

    Minh NQ (1993) J Am Ceram Soc 76(3):563

    Article  CAS  Google Scholar 

  11. 11.

    Singhal SC, Kendall K (2003) High temperature solid oxide fuel cell - fundamentals, design and applications. Elseviser, Oxford

    Google Scholar 

  12. 12.

    Benton AF, Emmett PH (1924) J Am Chem Soc 46(12):2728

    Article  CAS  Google Scholar 

  13. 13.

    Richardson JT, Scates R, Twigg MV (2003) Appl Catal A 246(1):137

    Article  CAS  Google Scholar 

  14. 14.

    Rodriguez JA, Hanson JC, Frenkel AI, Kim JY, Perez M (2002) J Am Chem Soc 124(2):346

    Article  CAS  Google Scholar 

  15. 15.

    Hossain MM, De Lasa HI (2007) AIChE J 53(7):1817

    Article  CAS  Google Scholar 

  16. 16.

    Jankovic B, Adnadevic B, Mentus S (2008) Chem Eng Sci 63(3):567

    Article  CAS  Google Scholar 

  17. 17.

    Erri P, Varma A (2009) Ind Eng Chem Res 48(1):4

    Article  CAS  Google Scholar 

  18. 18.

    Syed-Hassan SSA, Li CZ (2011) Int J Chem Kinet 43(12):667

    Article  CAS  Google Scholar 

  19. 19.

    Khawam A, Flanagan DR (2006) J Phys Chem B 110(35):17315

    Article  CAS  Google Scholar 

  20. 20.

    Avrami M (1939) J Chem Phys 7(12):1103

    Article  CAS  Google Scholar 

  21. 21.

    Avrami M (1940) J Chem Phys 8(2):212

    Article  CAS  Google Scholar 

  22. 22.

    Avrami M (1941) J Chem Phys 9(2):177

    Article  CAS  Google Scholar 

  23. 23.

    Jankovic B, Adnadevic B, Mentus S (2007) Thermochim Acta 456(1):48

    Article  CAS  Google Scholar 

  24. 24.

    Yagi S, Kunii D (1955) Symp (Int) Combust 5(1):231

    Article  Google Scholar 

  25. 25.

    Utigard TA, Wu M, Plascencia G, Marin T (2005) Chem Eng Sci 60(7):2061

    Article  CAS  Google Scholar 

  26. 26.

    Szekely J, Evans JW (1971) Metall Trans 2(6):1699

    CAS  Google Scholar 

  27. 27.

    L’Vov BV (2010) Russ J Appl Chem 83(5):778

    Article  Google Scholar 

  28. 28.

    Sharma R (2009) Microsc Res Tech 72(3):144

    Article  CAS  Google Scholar 

  29. 29.

    Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsøe H (2002) Science 295(5562):2053

    Article  CAS  Google Scholar 

  30. 30.

    Chenna S, Banerjee R, Crozier PA (2011) Chem Cat Chem 3(6):1051

    CAS  Google Scholar 

  31. 31.

    Yoshida H, Kuwauchi Y, Jinschek JR, Sun K, Tanaka S, Kohyama M, Shimada S, Haruta M, Takeda S (2012) Science 335(6066):317

    Article  CAS  Google Scholar 

  32. 32.

    Hofmann S, Sharma R, Wirth CT, Cervantes-Sodi F, Ducati C, Kasama T, Dunin-Borkowski RE, Drucker J, Bennett P, Robertson J (2008) Nat Mater 7(5):372

    Article  CAS  Google Scholar 

  33. 33.

    Sharma R (2005) J Mater Res 20(7):1695

    Article  CAS  Google Scholar 

  34. 34.

    Jeangros Q, Faes A, Wagner JB, Hansen TW, Aschauer U, Van herle J, Hessler-Wyser A, Dunin-Borkowski RE (2010) Acta Mater 58:4578

    Article  CAS  Google Scholar 

  35. 35.

    Langford JI, Wilson AJC (1978) J Appl Crystallogr 11(2):102

    Article  CAS  Google Scholar 

  36. 36.

    Hansen TW, Wagner JB, Dunin-Borkowski RE (2010) Mater Sci Technol 26(11):1338

    Article  CAS  Google Scholar 

  37. 37.

    Sharma R (2012) Micron 43(11):1147

    Article  CAS  Google Scholar 

  38. 38.

    Egerton RF (2009) Rep Prog Phys 72(1):016502

    Article  Google Scholar 

  39. 39.

    Leapman RD, Grunes LA, Fejes PL (1982) Phys Rev B 26(2):614

    Article  CAS  Google Scholar 

  40. 40.

    Riedl T, Gemming T, Wetzig K (2006) Ultramicroscopy 106(4–5):284

    Article  CAS  Google Scholar 

  41. 41.

    Mitterbauer C, Kothleitner G, Grogger W, Zandbergen H, Freitag B, Tiemeijer P, Hofer F (2003) Ultramicroscopy 96(3–4):469

    Article  CAS  Google Scholar 

  42. 42.

    Bonnet N, Brun N, Colliex C (1999) Ultramicroscopy 77(3–4):97

    Article  CAS  Google Scholar 

  43. 43.

    Keenan MR, Kotula PG (2004) Surf Interface Anal 36(3):203

    Article  CAS  Google Scholar 

  44. 44.

    Gatan (2010) Digital micrograph™ 1.84.1282 edn. GATAN

  45. 45.

    Pearson DH, Ahn CC, Fultz B (1993) Phys Rev B 47(14):8471

    Article  CAS  Google Scholar 

  46. 46.

    van Aken PA, Liebscher B (2002) Phys Chem Miner 29(3):188

    Article  Google Scholar 

  47. 47.

    van Aken PA, Liebscher B, Styrsa VJ (1998) Phys Chem Miner 25(5):323

    Article  Google Scholar 

  48. 48.

    Rez P, Moore ES, Sharma R (2008) Microsc Microanal 14(Suppl. 2):1382

    Google Scholar 

  49. 49.

    Sharma R, Crozier PA, Kang ZC, Eyring L (2004) Phil Mag 84(25–26):2731

    Article  CAS  Google Scholar 

  50. 50.

    Kissinger HE (1957) Anal Chem 29(11):1702

    Article  CAS  Google Scholar 

  51. 51.

    Senum GI, Yang RT (1977) J Therm Anal 11(3):445

    Article  Google Scholar 

  52. 52.

    Tarfaoui A (1996) Modelling the kinetics of reduction by temperature programming. Delft University of Technology, Delft

    Google Scholar 

  53. 53.

    Nelder JA, Mead R (1965) The Comput J 7(4):308

    Article  Google Scholar 

  54. 54.

    Faes A, Nakajo A, Hessler-Wyser A, Dubois D, Brisse A, Modena S, Van herle J (2009) J Power Sources 193:55

    Article  CAS  Google Scholar 

  55. 55.

    Stadelmann PA (1987) Ultramicroscopy 21(2):131

    Article  CAS  Google Scholar 

  56. 56.

    Adnadevic B, Jankovic B (2008) Phys B 403(21–22):4132

    Article  CAS  Google Scholar 

  57. 57.

    Buckett MI, Marks LD (1990) Surf Sci 232(3):353

    Article  CAS  Google Scholar 

  58. 58.

    Little JA, Evans JW, Westmacott KH (1980) Metall Trans B 11(3):519

    Article  Google Scholar 

  59. 59.

    Ostyn KM, Carter CB (1982) Surf Sci 121(3):360

    Article  CAS  Google Scholar 

  60. 60.

    Belton GR, Jordan AS (1967) The J Phys Chem 71(12):4114

    Article  CAS  Google Scholar 

  61. 61.

    Du K, Ernst F, Garrels M, Payer J (2008) Int J Mater Res 99(5):548

    Article  CAS  Google Scholar 

  62. 62.

    Gubner A, Landes H, Metzger J, Seeg H, Stübner R (1997) Investigations into the degradation of the cermet anode of a solid oxide fuel cells. In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) Solid Oxide Fuel Cells V, The electrochemical society, pp 844

  63. 63.

    Sarantaridis D, Atkinson A (2007) Fuel Cells 7(3):246

    Article  CAS  Google Scholar 

  64. 64.

    Richardson JT, Lei M, Turk B, Forster K, Twigg MV (1994) Appl Catal A 110(2):217

    Article  CAS  Google Scholar 

  65. 65.

    Egerton RF, Li P, Malac M (2004) Micron 35(6):399

    Article  CAS  Google Scholar 

  66. 66.

    Zhang Z, Su D (2009) Ultramicroscopy 109(6):766

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from the Swiss National Science Foundation is gratefully acknowledged (project ‘IN SItu TEm study of reduction and reoxidation of Ni(O)-ceramic composite (INSITE)’). The authors thank D. Laub for TEM sample preparation, G. Lucas for Digital Micrograph plugins, D. Alexander for useful discussions about EELS, and P. Stadelmann for help with Mathematica ® programming. The A.P. Møller and Chastine Mc-Kinney Møller Foundation is gratefully acknowledged for their contribution towards the establishment of the Center for Electron Nanoscopy in the Technical University of Denmark.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Q. Jeangros.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jeangros, Q., Hansen, T.W., Wagner, J.B. et al. Reduction of nickel oxide particles by hydrogen studied in an environmental TEM. J Mater Sci 48, 2893–2907 (2013). https://doi.org/10.1007/s10853-012-7001-2

Download citation

Keywords

  • Kissinger Method
  • SiO2 Film
  • Thermal Drift
  • Solid Oxide Fuel Cell Anode
  • Environmental Transmission Electron Microscopy