Journal of Materials Science

, Volume 48, Issue 5, pp 2167–2175 | Cite as

Green polyurethane nanocomposites from soy polyol and bacterial cellulose

  • M. Özgür Seydibeyoğlu
  • Manjusri Misra
  • Amar Mohanty
  • Jonny J. Blaker
  • Koon-Yang Lee
  • Alexander Bismarck
  • Mohammad Kazemizadeh
Article

Abstract

With increased environmental concerns, fluctuations in oil prices, and dependency on oil, there has been an emergence in the use of biobased polyurethanes prepared with polyols derived from plant oils, such as soybean oil. In this study, novel polyurethane materials were synthesized using polyols obtained from soybean oils. The polyurethanes were produced by reacting the polyols with polymeric isocyanate with an isocyanate index of 100 at 150 °C for 2 h for complete curing. The mechanical properties of this biobased polyurethane were improved by incorporating novel nanosized cellulose produced from bacteria. The source of the bacterial cellulose nanofibrils was a commercially available food product nata-de-coco. A fine dispersion of the nanocellulose fibrils in biobased polyurethane matrix was achieved by using a high speed homogenizer at 30,000 rpm, which was observed by field emission transmission electron microscopy and scanning probe microscopy. The average diameter size of the cellulose fibers were determined to be 22 ± 5 nm by scanning probe microscopy. The flexural strength and modulus were improved even at 0.125 wt% bacterial cellulose concentration and the optimum nanocomposite was obtained with 0.250 wt% concentration due to good interaction of isocyanates and the cellulose. Dynamic mechanical analysis supported the flexural testing data for modulus values. Transparent thick nanocomposite samples show one additional advantage of the nanocomposite technology.

References

  1. 1.
    Rehab A, Salahuddin N (2005) Mater Sci Eng A 399:368CrossRefGoogle Scholar
  2. 2.
    Gorrasi G, Tortora M, Vittoria V (2005) J Polym Sci B 43:2454CrossRefGoogle Scholar
  3. 3.
    Seydibeyoglu MO, Isci S, Gungor N, Ece OI, Guner FS (2010) J Appl Polym Sci 116:832Google Scholar
  4. 4.
    Oertel G (1994) Polyurethane handbook. Hanser Gardner Publications, BerlinGoogle Scholar
  5. 5.
    Seydibeyoglu MO, Oksman K (2008) Compos Sci Technol 68:908CrossRefGoogle Scholar
  6. 6.
    Petrovic ZS, Ferguson J (1991) Prog Polym Sci 16:695CrossRefGoogle Scholar
  7. 7.
    Yıldız B, Seydibeyoglu MO, Guner FS (2009) Polym Degrad Stab 94:1072CrossRefGoogle Scholar
  8. 8.
    Lambda NMK, Woodhouse KA, Cooper SL (1997) Polyurethanes in biomedical applications. CRC Press, Boca RatonGoogle Scholar
  9. 9.
    Sharma V, Kundu PP (2008) Prog Polym Sci 33:1199CrossRefGoogle Scholar
  10. 10.
    Güner FS, Yağc Y, Erciyes AT (2006) Prog Polym Sci 31:633CrossRefGoogle Scholar
  11. 11.
    Kiatsimkul PP, Suppes GJ, Sutterlin WR (2007) Ind Crops Prod 25:202CrossRefGoogle Scholar
  12. 12.
    Kiatsimkul PP, Suppes GJ, Hsieh FH, Lozada Z, Tu YC (2008) Ind Crops Prod 25:257CrossRefGoogle Scholar
  13. 13.
    Guo A, Demydov D, Zhang W, Petrovic ZS (2002) J Polym Env 10:49CrossRefGoogle Scholar
  14. 14.
    Husic S, Javni I, Petrovic ZS (2005) Compos Sci Technol 65:19CrossRefGoogle Scholar
  15. 15.
    Latere Dwan’Isa JP, Mohanty AK, Misra M, Drzal LT, Kazemizadeh M (2003) J Polym Env 11:161CrossRefGoogle Scholar
  16. 16.
    Ferrer MCC, Babb D, Ryan AJ (2008) Polymer 49:3279CrossRefGoogle Scholar
  17. 17.
    Tu YC, Fan H, Suppes GJ, Hsieh FH (2009) J Appl Polym Sci 114:2577CrossRefGoogle Scholar
  18. 18.
    Latere Dwan’Isa JP, Mohanty AK, Misra M, Drzal LT, Kazemizadeh M (2004) J Mater Sci 39:2081CrossRefGoogle Scholar
  19. 19.
    Latere Dwan’Isa JP, Mohanty AK, Misra M, Drzal LT, Kazemizadeh M (2004) J Mater Sci 39:1887CrossRefGoogle Scholar
  20. 20.
    Dufresne A (2008) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, p 401CrossRefGoogle Scholar
  21. 21.
    Bondeson D, Mathew A, Oksman K (2006) Cellulose 13:171CrossRefGoogle Scholar
  22. 22.
    Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009) Carbohydr Polym 76:607CrossRefGoogle Scholar
  23. 23.
    Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Compos Sci Technol 69:1293CrossRefGoogle Scholar
  24. 24.
    Blaker JJ, Lee KY, Li X, Menner A, Bismarck A (2009) Green Chem 11:1321CrossRefGoogle Scholar
  25. 25.
    Lee KY, Blaker JJ, Bismarck A (2009) Compos Sci Technol 69:2724CrossRefGoogle Scholar
  26. 26.
    Gindl W, Keckes J (2004) Compos Sci Technol 64:2407CrossRefGoogle Scholar
  27. 27.
    Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer MSP, Bismarck A (2008) Adv Mater 20:3122CrossRefGoogle Scholar
  28. 28.
    Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) Cellulose 15:507CrossRefGoogle Scholar
  29. 29.
    Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F (1995) Biosci Biotechnol Biochem 59:1498CrossRefGoogle Scholar
  30. 30.
    Merlatti C, Perrin FX, Aragon E, Margaillan A (2008) Polym Degrad Stab 93:896CrossRefGoogle Scholar
  31. 31.
    Mishra AK, Chattopadhyay DK, Sreedhar B, Raju KVSN (2006) Prog Org Coat 55:231CrossRefGoogle Scholar
  32. 32.
    Ciobanu C, Ungureanu M, Ignat L, Ungureanu D, Popa VI (2004) Ind Crops Prod 20:231CrossRefGoogle Scholar
  33. 33.
    Jiang L, Morelius E, Zhang J, Wolcott M (2008) J Compos Mater 42:2629CrossRefGoogle Scholar
  34. 34.
    Ljungberg N, Cavaille JY, Heux L (2006) Polymer 47:6285CrossRefGoogle Scholar
  35. 35.
    Lu J, Askeland P, Drzal LT (2008) Polymer 49:1285CrossRefGoogle Scholar
  36. 36.
    Raj RG, Kokta BV, Maldas D, Danealt C (1989) J Appl Polym Sci 7:1089CrossRefGoogle Scholar
  37. 37.
    Kahng GG, Lim SH, Yun HD, Seo WT (2001) Biotechnol Bioprocess Eng 6:112CrossRefGoogle Scholar
  38. 38.
    Bledzki AK, Faruk O (2004) Compos Sci Technol 64:693CrossRefGoogle Scholar
  39. 39.
    Iguchi M, Yamanaka S, Budhiono A (2000) J Mater Sci 35:261. doi:10.1023/A:1004775229149 CrossRefGoogle Scholar
  40. 40.
    Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose 5:249CrossRefGoogle Scholar
  41. 41.
    Astley OM, Chanliaud E, Donald AM, Gidley MJ (2001) Int J Biol Macromol 29:193CrossRefGoogle Scholar
  42. 42.
    Stelzig BSH, Klapper M, Müllen K (2008) Adv Mater 20:929CrossRefGoogle Scholar
  43. 43.
    Kim Y, Jung R, Kim HS, Jin HJ (2009) Curr Appl Phys 9:S69CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • M. Özgür Seydibeyoğlu
    • 1
    • 2
  • Manjusri Misra
    • 1
    • 3
  • Amar Mohanty
    • 1
    • 3
  • Jonny J. Blaker
    • 4
  • Koon-Yang Lee
    • 4
  • Alexander Bismarck
    • 4
  • Mohammad Kazemizadeh
    • 5
  1. 1.Bioproducts Discovery & Development Centre (BDDC), Department of Plant AgricultureUniversity of GuelphGuelphCanada
  2. 2.Department of Materials Science and EngineeringIzmir Katip Celebi UniversityIzmirTurkey
  3. 3.School of EngineeringUniversity of GuelphGuelphCanada
  4. 4.Polymer and Composite Engineering (PaCE) Group, Department of Chemical EngineeringImperial College LondonLondonUK
  5. 5.Arkema Inc.Blooming PrairieUSA

Personalised recommendations