Journal of Materials Science

, Volume 48, Issue 5, pp 2142–2150 | Cite as

Carbon-supported AuPd bimetallic nanoparticles synthesized by high-energy electron beam irradiation for direct formic acid fuel cell

  • Yuji Ohkubo
  • Masashi Shibata
  • Satoru Kageyama
  • Satoshi Seino
  • Takashi Nakagawa
  • Junichiro Kugai
  • Hiroaki Nitani
  • Takao A. Yamamoto


Nanoparticle catalysts of carbon-supported Pd (Pd/C) and carbon-supported AuPd (AuPd/C) for the direct formic acid fuel cell (DFAFC) anode were synthesized by the reduction of precursor ions in an aqueous solution irradiated with a high-energy electron beam. We obtained three kinds of nanoparticle catalysts: (1) Pd/C, (2) AuPd/C of the core–shell structure, and (3) AuPd/C of the alloy structure. The structures of AuPd nanoparticles were controlled by the addition of citric acid as a chelate agent, and sodium hydroxide as a pH controller. The structures of nanoparticle catalysts were characterized using transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, the techniques of X-ray diffraction and X-ray absorption fine structure. The catalytic activity of the formic acid oxidation was evaluated using linear sweep voltammetry. The oxidation current value of AuPd/C was higher than that of Pd/C. This indicated that the addition of Au to Pd/C improved the oxidation activity of the DFAFC anode. In addition, the AuPd/C of the alloy structure had higher oxidation activity than the AuPd/C of the core–shell structure. The control of the AuPd mixing state was effective in enhancing the formic acid oxidation activity.


  1. 1.
    Rodriguez JA (1996) Surf Sci Rep 24:223. doi:10.1016/0167-5729(96)00004-0 CrossRefGoogle Scholar
  2. 2.
    Kim IT, Lee HK, Shim J (2008) J Nanosci Nanotechnol 8:5302. doi:10.1166/jnn.2008.1147 CrossRefGoogle Scholar
  3. 3.
    Cárdenas-Lizana F, Gómez-Quero S, Baddeley CJ, Keane MA (2010) Appl Catal A 387:155. doi:10.1016/j.apcata.2010.08.019 CrossRefGoogle Scholar
  4. 4.
    Yamamoto TA, Nakagawa T, Seino S, Nitani H (2010) Appl Catal A 387:195. doi:10.1016/j.apcata.2010.08.020 CrossRefGoogle Scholar
  5. 5.
    Edwards JK, Solsona B, Landon P, Carley AF, Herzing A, Watanabe M, Kiely CJ, Hutchings GJ (2005) J Mater Chem 15:4595. doi:10.1039/b509542e CrossRefGoogle Scholar
  6. 6.
    Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Science 311:362. doi:10.1126/science.1120560 CrossRefGoogle Scholar
  7. 7.
    Solsona BE, Edwards JK, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ (2006) Chem Mater 18:2689. doi:10.1021/cm052633o CrossRefGoogle Scholar
  8. 8.
    Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) J Power Sources 111:83. doi:10.1016/S0378-7753(02)00271-9 CrossRefGoogle Scholar
  9. 9.
    Rice C, Ha S, Masel RI, Wieckowski A (2003) J Power Sources 115:229. doi:10.1016/S0378-7753(03)00026-0 CrossRefGoogle Scholar
  10. 10.
    Rhee YW, Ha SY, Masel RI (2003) J Power Sources 117:35. doi:10.1016/S0378-7753(03)00352-5 CrossRefGoogle Scholar
  11. 11.
    Kageyama S, Seino S, Nakagawa T, Nitani H, Ueno K, Daimon H, Yamamoto TA (2011) J Nanopart Res 13:5275. doi:10.1007/s11051-011-0513-x CrossRefGoogle Scholar
  12. 12.
    Kugai J, Kitagawa R, Seino S, Nakagawa T, Ohkubo Y, Nitani H, Daimon H, Yamamoto TA (2011) Appl Catal A 406:43. doi:10.1016/j.apcata.2011.08.006 CrossRefGoogle Scholar
  13. 13.
    Ohkubo Y, Shibata M, Kageyama S, Seino S, Nakagawa T, Kugai J, Yamamoto TA (2011) Mater Lett 65:2165. doi:10.1016/j.matlet.2011.04.023 CrossRefGoogle Scholar
  14. 14.
    Belloni J (2006) Catal Today 113:141. doi:10.1016/j.cattod.2005.11.082 CrossRefGoogle Scholar
  15. 15.
    Seino S, Kinoshita T, Nakagawa T, Kojima T, Taniguci R, Okuda S, Yamamoto TA (2008) J Nanopart Res 10:1071. doi:10.1007/s11051-007-9334-3 CrossRefGoogle Scholar
  16. 16.
    Yamamoto TA, Kageyama S, Seino S, Nitani H, Nakagawa T, Horioka R, Honda Y, Ueno K, Daimon H (2011) Appl Catal A 396:68. doi:10.1016/j.apcata.2011.01.037 CrossRefGoogle Scholar
  17. 17.
    Ravel B, Newville M (2005) J Synchrotron Radiat 12:537. doi:10.1107/S0909049505012719 CrossRefGoogle Scholar
  18. 18.
    Rehr JJ, Albers RC (2000) Rev Mod Phys 72:621. doi:10.1103/RevModPhys.72.621 CrossRefGoogle Scholar
  19. 19.
    Newville M, Ravel B, Haskel D, Rehr JJ, Stern EA, Yacoby Y (2000) Physica B 208&209:154. doi:10.1016/0921-4526(94)00655-F Google Scholar
  20. 20.
    Nakagawa T, Nitani H, Tanbabe S, Okitsu K, Seino S, Mizukoshi Y, Yamamoto TA (2005) Ultrason Sonochem 12:249. doi:10.1016/j.ultsonch.2004.02.002 CrossRefGoogle Scholar
  21. 21.
    Nitani H, Yuya M, Ono T, Nakagawa T, Seino S, Okitsu K, Mizukoshi Y, Emura S, Yamamoto TA (2006) J Nanopart Res 8:951. doi:10.1007/s11051-005-9048-3 CrossRefGoogle Scholar
  22. 22.
    Nitani H, Nakagawa T, Daimon H, Kurobe Y, Ono T, Honda Y, Koizumi A, Seino S, Yamamoto TA (2007) Appl Catal A 326:194. doi:10.1016/j.apcata.2007.04.018 CrossRefGoogle Scholar
  23. 23.
    Onodera T, Suzuki S, Takamori Y, Daimon H (2010) Appl Catal A 379:69. doi:10.1016/j.apcata.2010.03.003 CrossRefGoogle Scholar
  24. 24.
    Kugai J, Moriya T, Seino S, Nakagawa T, Ohkubo Y, Nitani H, Daimon H, Yamamoto TA (2012) Int J Hydrog Energy 37:4787. doi:10.1016/j.ijhydene.2011.12.070 CrossRefGoogle Scholar
  25. 25.
    Zhou W, Lee JY (2007) Electrochem Commun 9:1725. doi:10.1016/j.elecom.2007.03.016 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Yuji Ohkubo
    • 1
  • Masashi Shibata
    • 1
  • Satoru Kageyama
    • 1
  • Satoshi Seino
    • 1
  • Takashi Nakagawa
    • 1
  • Junichiro Kugai
    • 1
  • Hiroaki Nitani
    • 2
  • Takao A. Yamamoto
    • 1
  1. 1.Graduate School of EngineeringOsaka UniversityOsakaJapan
  2. 2.Institute of Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK)IbarakiJapan

Personalised recommendations