Skip to main content
Log in

Influence of ammonia, lithium hydroxide, and hexamine on ZnO films synthesized by successive ionic layer adsorption and reaction technique

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Various nanostructured zinc oxide (ZnO) films have been developed on non-seeded soda-lime glass substrates by successive ionic layer adsorption and reaction (SILAR) method, employing different baths of aqueous zinc sulfate solution using complexing agents of ammonia, lithium hydroxide, and hexamine. Influence of complexing agents on the structural, morphological, chemical compositional, optical and electrical properties of the films were investigated and compared among and with the samples annealed at 400 °C. Role of complexing agents on the growth process was discussed. X-ray diffraction analysis revealed that the ZnO films were polycrystalline dominating with (100), (002), and (101) oriented crystallites of hexagonal wurtzite structure. The lattice constants, c/a ratio, internal relaxation parameter, anion–cation (Zn–O) bond length, and the tetrahedral angles of ZnO films were determined. Cauliflower, flower, and flower-like nanorod morphologies of the films from the respective baths were exposed by scanning electron microscopic studies. Optical analysis of all films except that prepared from hexamine showed low absorbance and a higher transmittance 70–85 % in the entire visible region. Resistivity of annealed films was one order of magnitude lower than that of the as-grown films. We demonstrated utility of SILAR as an efficient single step soft chemical route for obtaining high-quality crystalline ZnO films having high-specific surface area on non-seeded substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Long T, Yin S, Takabatake K, Zhnag P, Sato T (2009) Nanoscale Res Lett 4:247

    Article  CAS  Google Scholar 

  2. Levin I, Davydov A, Nikoobakht B, Sanford N, Mogilevsky P (2005) Appl Phys Lett 87:103110

    Article  Google Scholar 

  3. Maiti UN, Ahmed SkF, Mitra MK, Chattopadhyay KK (2009) Mater Res Bull 44:134

    Google Scholar 

  4. Ozgur U, Alivov YaI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) J Appl Phys 98: 041301

    Google Scholar 

  5. Hsu CL, Chang SJ, Lin YR, Li PC, Lin TS, Tsai SY, Lu TH, Chen IC (2005) Chem Phys Lett 416:75

    Article  CAS  Google Scholar 

  6. Xu CX, Sun XW (2003) Appl Phys Lett 83:3806

    Article  CAS  Google Scholar 

  7. Saito N, Haneda H, Sekiguchi T, Ohashi N, Sakaguchi I, Koumoto K (2002) Adv Mater 14:418

    Article  CAS  Google Scholar 

  8. Chen PL, Ms XY, Yang DR (2006) Appl Phys Lett 89:111112

    Article  Google Scholar 

  9. Wang JX, Sun XW, Wei A, Lei Y, Cai XP, Li CM, Dong ZL (2006) Appl Phys Lett 88:233106

    Article  Google Scholar 

  10. Law M, Greene LE, Johnson JC, Saykally R, Yang PD (2005) Nat Mater 4:455

    Article  CAS  Google Scholar 

  11. Baviskar PK, Tan WW, Zhang JB, Sankapal BR (2009) J Phys D Appl Phys 42:125108

    Article  Google Scholar 

  12. Gao Yanfeng, Nagai Masayuki (2006) Langmuir 22:3936

    Article  CAS  Google Scholar 

  13. Wang XB, Song C, Li DM, Geng KW, Zeng F, Pan F (2006) Appl Surf Sci 253:1639

    Article  CAS  Google Scholar 

  14. Wu ZY, Cai JH, Ni G (2008) Thin Solid Films 516:7318

    Article  CAS  Google Scholar 

  15. Shinde VR, Lokhande CD, Mane RS, Sung-Hwan Han (2005) Appl Surf Sci 245:407

  16. Khallaf Hani, Chai Guangyu, Lupan Oleg, Heinrich Helge, Park Sanghoon, Schulte Alfons, Chow Lee (2009) J Phys D Appl Phys 42:135304

    Article  Google Scholar 

  17. Hu X, Masuda Y, Ohji T, Kato K (2009) Thin Solid Films 518:906

    Article  CAS  Google Scholar 

  18. Mingsong Wang, Sung Hong Hahn, Eui Jung Kim, Jae Seong Kim, Sunwook Kim, Chinho Park, Kee-Kahb Koo (2008) Thin Solid Films 516:8599

  19. Li Q, Bian J, Sun J, Wang J, Luo Y, Sun K, Yu D (2010) Appl Surf Sci 256:1698

    Article  CAS  Google Scholar 

  20. Song Jaejin, Lim Sangwoo (2007) J Phys Chem C 111:596

    Article  CAS  Google Scholar 

  21. Yang LL, Zhao QX, Willander M, Yang JH (2009) J Cryst Growth 31:1046

    Article  Google Scholar 

  22. Suresh Kumar P, Dhayal Raj A, Mangalraj D, Nataraj D (2008) Appl Surf Sci 255:2382

    Google Scholar 

  23. Ristov M, Sinadinovski G, Grozdanov I, Mitreski M (1987) Thin Solid Films 149:65

    Article  CAS  Google Scholar 

  24. Svehla G (1979) Vogel’s macro and semimicro qualitative inorganic analysis, 5th edn. Longman Inc., New York

    Google Scholar 

  25. Yang LL, Zhao QX, Magnus Willander (2009) J Alloys Compd 469:623

    Google Scholar 

  26. Zhang J, Sun L, Yin J, Su H, Liao C, Yan C (2002) Chem Mater 14:4172

    Article  CAS  Google Scholar 

  27. Shishiyanu ST, Lupan OI, Monaico EV, Ursaki VV, Shishiyanu TS, Tiginyanu IM (2005) Thin Solid Films 488:15

    Article  CAS  Google Scholar 

  28. Xiang-Dong Gao, Xiao-Min Li, Wei-Dong Yu, Lei Li, Fang Peng, Can-Yun Zhang (2006) J Cryst Growth 291:175

  29. Ambacher O, Majewski J, Miskys C et al. (2002) J Phys: Condens Matter 14:3399

    Google Scholar 

  30. Morkoc H, Ozgur HU (2009) Zinc Oxide: fundamentals, materials and device technology. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim

    Google Scholar 

  31. Liou SC, Hsiao CS, Chen SY (2005) J Cryst Growth 274:438

    Article  CAS  Google Scholar 

  32. Hodes G, Yaro AA, Decker F, Motisuke P (1987) Phys Rev B 36:4215

    Article  CAS  Google Scholar 

  33. Li L, Fang L, Chen XM, Liu J, Yang FF, Li QJ, Liu GB, Feng SJ (2008) Physica E 41:169

    Article  CAS  Google Scholar 

  34. Seto JYW (1975) J Appl Phys 46(12):5247

    Article  CAS  Google Scholar 

  35. Orton JW, Goldsmith BJ, Chapman JA, Powell MJ (1982) J Appl Phys 53(3):1602

    Article  CAS  Google Scholar 

  36. Bouderbala M, Hamzaoui S, Amrani B, Ali H Reshak, Adnane M, Sahraoui T, Zerdali M (2008) Physica B 403:3326

Download references

Acknowledgements

KVM acknowledges UGC, India for supporting research work through Faculty Development Programme (FDP). We express our sincere gratitude to STIC, Kerala, India for offering technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Murali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murali, K.V., Ragina, A.J., Preetha, K.C. et al. Influence of ammonia, lithium hydroxide, and hexamine on ZnO films synthesized by successive ionic layer adsorption and reaction technique. J Mater Sci 48, 1852–1861 (2013). https://doi.org/10.1007/s10853-012-6982-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6982-1

Keywords

Navigation