Skip to main content
Log in

Dispersion of the linear and nonlinear optical susceptibilities of disilver germanium sulfide from DFT calculations

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dispersion of the linear and nonlinear optical susceptibilities is calculated for disilver germanium sulfide (Ag2GeS3) using the all-electron full potential linearized augmented plane wave (FP-LAPW) method. Calculations are performed with four exchange correlations namely local density approximation (LDA), general gradient approximation (GGA), Engel–Vosko generalized gradient approximation (EVGGA), and modified Becke–Johnson potential (mBJ). Our calculations give a band gap of 0.40 eV (LDA), 0.42 eV (GGA), 1.03 eV (EVGGA), and 1.30 eV (mBJ) in comparison with our measured gap (1.98 eV). The mBJ exchange correlation gives the best agreement with experiment. We find that the calculated linear optical susceptibilities of Ag2GeS3 show considerable anisotropy which is useful for second harmonic generation and optical parametric oscillation. To analyze the spectra of the calculated χ (2)113 (ω), χ (2)232 (ω), χ (2)311 (ω), χ (2)322 (ω), and χ (2)333 (ω), we have correlated the features of these spectra with the features of ɛ2(ω) spectra as a function of ω/2 and ω. From the calculated dominant component |χ (2)333 (ω)|, we find that the microscopic second-order hyperpolarizability, β333, the vector components along the dipole moment direction is 41.2 × 10−30 esu at static limit and 222.9 × 10−30 esu at λ = 1064 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Our measurements of the energy gap [the band gap of Ag2GeS3 estimated from the maximum of the intrinsic photoconductivity (λ = 575 nm) is about 2.16 eV, also estimated from the fundamental absorption edge to be 1.98 eV].

References

  1. Deb SK, Zunger A (eds) (1987) Ternary and multinary compounds. Materials Research Society, Pittsburgh

    Google Scholar 

  2. Jaffe GE, Zunger A (1983) Phys Rev B 28:5822v

    Article  Google Scholar 

  3. Jaffe GE, Zunger A (1984) Phys Rev B 29:1882

    Article  CAS  Google Scholar 

  4. Rincon C, Bellabarba C (1986) Phys Rev B 33:7160

    Article  CAS  Google Scholar 

  5. Parthe E (1964) Crystal chemistry of tetrahedral structures. Gordon and Breach, New York

    Google Scholar 

  6. Goryunova NA (1965) The chemistry of diamond-like semiconductors. Chapman and Hall, New York

    Google Scholar 

  7. Shay JL, Wernick JH (1974) Ternury chalcopyrite semiconductors: growth, electronic properties and applications. Pergamon, Oxford

    Google Scholar 

  8. Kaufmann U, Schneider J (1974) In: Treusch J (ed) Festkorperprobleme XIV. Vieweg, Braunschweig, p 229

    Chapter  Google Scholar 

  9. Wagner J (1977) In: Pankove JO (ed) Electroluminescence. Springer, Berlin, p 171

    Chapter  Google Scholar 

  10. Mackinnon A (1981) In: Treusch J (ed) Festkorperprobleme XXI. Vieweg, Dortmund, p 149

    Chapter  Google Scholar 

  11. Miller A, Mackinnon A, Weaire D (1981) In: Ehrenreich H, Seitz F, Turubull D (eds) Solid state physics, vol 36. Academic, New York

    Google Scholar 

  12. Pamplin BR, Kiyosawa T, Mastumoto K (1979) Prog Cryst Growth Charact 1:331

    Article  CAS  Google Scholar 

  13. Kazmerski LL (1983) Nuovo Cimento D2:2013

    Article  Google Scholar 

  14. Shay JL, Schiavone LM, Buehier E, Wernick JH (1972) J Appl Phys 43:2805

    Article  CAS  Google Scholar 

  15. Wagner S, Shay JL, Tell B, Kasper HM (1973) Appl Phys Lett 22:351

    Article  CAS  Google Scholar 

  16. Levine BF (1973) Phys Rev B 7:2600 and references therein

    Article  CAS  Google Scholar 

  17. Hopkius FK (1995) Laser Focus World 31:87

    Google Scholar 

  18. Minayev VC (1991) Glassy semiconductor alloys. Metallurgiya, Moscow (in Russian)

    Google Scholar 

  19. ICSD#41711

  20. Dovgii YO, Kityk IV (1991) Phys Status Solidi 166B:395

    Article  Google Scholar 

  21. Dovgii YO, Kityk IV, Man’kovskaya IG, Evstigneeva LN (1990) Phys Semicond 24(9):1004

    Google Scholar 

  22. Fedorchuk AO, Gorgut GP, Parasyuk OV, Lakshminarayana G, Kityk IV, Piasecki M (2011) J Phys Chem Solids 72:1354

    Article  CAS  Google Scholar 

  23. Nouneh K, Kityk IV, Viennois R, Benet S, Charar S, Paschen S, Ozga K (2006) Phys Rev B 73:035329

    Article  Google Scholar 

  24. Reshak AH, Auluck S, Piasecki M, Myronchuk GL, Parasyukd O, Kityk IV, Kamarudin H (2012) Spectrochim Acta Part A 93:274

    Article  CAS  Google Scholar 

  25. Armand P, Ibanez A, Tonnerre JM, Bouchet-Fabre B, Philippot E (1997) Phys Rev B 56:10852

    Article  CAS  Google Scholar 

  26. Boyd GD, Kasper H, McFee JH (1971) IEEE J Quantum Electron QE-7:563

    Article  Google Scholar 

  27. Chemla DS, Kupcek PJ, Robertson DS, Smith RC (1971) Opt Commun 3:29

    Article  CAS  Google Scholar 

  28. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k, an augmented plane wave plus local orbitals program for calculating crystal properties. University of Technology, Vienna

    Google Scholar 

  29. Kohn W, Sham LJ (1965) Phys Rev A 140:1133

    Google Scholar 

  30. Perdew JP, Burke S, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  31. Engel E, Vosko SH (1993) Phys Rev B 47:13164

    Article  CAS  Google Scholar 

  32. Tran Fabien, Blaha Peter (2009) Phys Rev Lett 102:226401

    Article  Google Scholar 

  33. Gao S (2003) Comput Phys Commun 153:190

    Article  CAS  Google Scholar 

  34. Schwarz Karlheinz (2003) J Solid State Chem 176:319

    Article  CAS  Google Scholar 

  35. Bassani F, Parravicini GP (1975) Electronic states and optical transitions in solids. Pergamon Press Ltd., Oxford, p 149

    Google Scholar 

  36. Sharma S, Dewhurst JK, Ambrosch-Draxl C (2003) Phys Rev B 67:165332

    Article  Google Scholar 

  37. Reshak AH (2005) Ph.D. thesis, Indian Institute of Technology-Rookee, India

  38. Reshak AH (2006) J Chem Phys 125:014708

    Article  Google Scholar 

  39. Reshak. AH (2006) J Chem Phys 124:014707

    Article  Google Scholar 

  40. Ambrosch-Draxl C, Sofo J (2006) Comput Phys Commun 175:1

    Article  CAS  Google Scholar 

  41. Aspnes DE (1972) Phys Rev B 6:4648

    Article  CAS  Google Scholar 

  42. Tributsch H, Naturforsch Z (1977) J Electroanal Chem 32A:972

    CAS  Google Scholar 

  43. Penn DR (1962) Phys Rev B 128:2093

    Article  CAS  Google Scholar 

  44. Reshak AH, Kityk V, Auluck S (2010) J Phys Chem B 114:16705

    Article  CAS  Google Scholar 

  45. Reshak AH, Auluck S, Kityk IV (2008) J Solid State Chem 181:789

    Article  CAS  Google Scholar 

  46. Reshak AH, Auluck S, Kityk IV (2008) J Phys Condens Matter 20:145209

    Article  Google Scholar 

  47. Reshak AH, Auluck S, Kityk IV (2008) Appl Phys A 91:451

    Article  CAS  Google Scholar 

  48. Reshak AH, Auluck S (2008) PMC Phys B 1:12

    Article  Google Scholar 

  49. Reshak AH, Auluck S, Kityk IV (2009) J Alloy Compd 473:20

    Article  CAS  Google Scholar 

  50. Gokce B, Adles EJ, Aspnes DE, Gundogdu K (2010) Proc Natl Acad Sci 10:17503

    Article  Google Scholar 

  51. Ouahrani T, Otero-de-la-Roza A, Reshak AH, Khenata R, Faraoun HI, Amrani B, Mebrouki M, Luanã V (2010) Phys B 405:3658

    Article  CAS  Google Scholar 

  52. Boyd RY (1982) Principles of nonlinear optics. Academic Press, New York, p 420

    Google Scholar 

  53. Boyd RW (2008) Nonlinear optics, 3rd edn. Acadmic Press is an imprint of Elsevier. ISBN: 978-0-12-369470-6

Download references

Acknowledgements

This study was supported from the Project CENAKVA (No. CZ.1.05/2.1.00/01.0024), the Grant No. 152/2010/Z of the Grant Agency of the University of South Bohemia. School of Material Engineering, Malaysia University of Perlis, P.O. Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis, Malaysia. S.A. thanks Council of Scientific and Industrial Research (CSIR), National Physical Laboratory for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Reshak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reshak, A.H., Kamarudin, H. & Auluck, S. Dispersion of the linear and nonlinear optical susceptibilities of disilver germanium sulfide from DFT calculations. J Mater Sci 48, 1955–1965 (2013). https://doi.org/10.1007/s10853-012-6961-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6961-6

Keywords

Navigation