Journal of Materials Science

, Volume 48, Issue 5, pp 1863–1872 | Cite as

Fabrication and characterization of ZrO2–CaO–P2O5–Na2O–SiO2 bioactive glass ceramics

Article

Abstract

SiO2–CaO–Na2O–P2O5–ZrO2 based bioactive glasses with different compositions of SiO2 and yttrium stabilized ZrO2 were prepared by the conventional melt quenching technique. The effects on the chemical–mechanical properties of bioactive glasses due to the addition of ZrO2 by replacing SiO2 were investigated. Microstructure and phase behavior were studied by scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analysis. Compressive strength, porosity, Vickers hardness, and Young’s modulus were measured as mechanical properties. Bioactivity and cell viability were investigated by immersion in simulated body fluid and MTT assay analysis. Osteosarcoma cell proliferation on the specimen surfaces was examined by confocal laser scanning microscopy. The results showed that replacing SiO2 with ZrO2 helps the bioactive glass to be completely vitrified at comparatively lower sintering temperature than conventional Bioglass®. The mechanical properties were also improved without compromising biocompatibility. Bioactive glass containing 10 wt% ZrO2 and 35 wt% SiO2 showed compressive strength of 399.71 MPa, Young's modulus of 22.3 GPa, Vicker’s hardness of 502.54 HV, and porosity of 26 vol%.

References

  1. 1.
    Hench LL, Anderson O (1993) In: Hence LL, Wilson J (eds) Chapter 3: Bioactive glasses, an introduction to bioceramics. World Scientific Publishing Co., SingaporeGoogle Scholar
  2. 2.
    Hench LL, Splinter RJ, Allen WC, Greenlee TK Jr (1971) J Biomed Mater Res 5:117–141CrossRefGoogle Scholar
  3. 3.
    Hench LL (2009) J Eur Ceram Soc 29:1257CrossRefGoogle Scholar
  4. 4.
    Hench LL (2006) J Mater Sci Mater Med 17:967–978CrossRefGoogle Scholar
  5. 5.
    Hoppe A, Güldal NS, Boccaccini AR (2011) Biomaterials 32(11):2757–2774CrossRefGoogle Scholar
  6. 6.
    Fujibayashi F, Neo M, Kim HM, Kokubo T, Nakamura T (2003) Biomaterials 24:1349–1356CrossRefGoogle Scholar
  7. 7.
    Ono K, Yamamuro T, Nakamura T, Kokubo T (1990) J Biomed Mater Res 24(1):11–20CrossRefGoogle Scholar
  8. 8.
    Beall GH, Chyung K, Watkins HJ (1974) Mica glass-ceramics. US Patent No. 3801295Google Scholar
  9. 9.
    Vogel W, Höland W, Naumann K, Gummel J (1986) J Non Cryst Solids 80:34–51CrossRefGoogle Scholar
  10. 10.
    Nan Y, Lee WE, James PF (1992) J Am Ceram Soc 75:1641–1647CrossRefGoogle Scholar
  11. 11.
    Kokubo T, Matsushita T, Takadama H (2007) J Eur Ceram Soc 27:1553–1558CrossRefGoogle Scholar
  12. 12.
    Liping Y, Xiao H, Cheng Y (2008) Ceram Int 34:63–68CrossRefGoogle Scholar
  13. 13.
    Wu JM, Xiao F, Hayakawa S, Tsuru K, Takemoto S, Osaka A (2003) J Mater Sci Mater Med 14:1027–1032CrossRefGoogle Scholar
  14. 14.
    Park JB, Kim YK (2002) In: Park JB, Bronzino JD (eds) Metallic biomaterials, biomaterials—principles and applications. CRC press, Boca RatonGoogle Scholar
  15. 15.
    Rajendran V, Gayathri Devi AV, Azooz M, El-Batal FH (2007) J Non Cryst Solids 353:77–84CrossRefGoogle Scholar
  16. 16.
    Brink M, Pitkänen V, Tikkanen J, Paajanen M, Graeffe G (1996) In: Kokubo T, Nakamura T, Miyaji F (eds) Spherical particles of a bioactive glass-manufacturing and reactions in vitro, bioceramics, vol 9. Pergamon, OxfordGoogle Scholar
  17. 17.
    Sepulveda P, Jones JR, Hench LL (2001) J Biomed Mater Res Appl Biomater 58:734–740CrossRefGoogle Scholar
  18. 18.
    Magallanes-Perdomo M, Luklinska ZB, De Aza AH, Carrodeguas RG, Aza S, Pena P (2011) J Eur Ceram Soc 31:1549–1561CrossRefGoogle Scholar
  19. 19.
    Brauer DS, Rüssel C, Kraft J (2007) J Non-Cryst Solids 353:263–270CrossRefGoogle Scholar
  20. 20.
    Piconi C, Maccauro G (1999) Biomaterials 20:1–25CrossRefGoogle Scholar
  21. 21.
    Nakanishi N, Shigematsu T (1992) Mater Trans 33:318–323Google Scholar
  22. 22.
    Ho WF, Hsu HC, Peng YF, Wu YC (2011) Ceram Int 37:1169–1171CrossRefGoogle Scholar
  23. 23.
    Kord M, Marghussian VK, Eftekhari-yekta B, Bahrami A (2009) Mater Res Bull 44:1670–1675CrossRefGoogle Scholar
  24. 24.
    Blessing GY (1990) In: Alan Wolfenden (ed) The pulsed ultrasonic velocity method for determining materials elastic moduli, dynamic elastic modulus measurements in materials. ASTM International, PhiladelphiaGoogle Scholar
  25. 25.
    Czichos H, Saito T, Smith LE (2011) Springer handbook of metrology and testing. Springer, HeidelbergCrossRefGoogle Scholar
  26. 26.
    Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRefGoogle Scholar
  27. 27.
    Habibe AF, Maeda LD, Souza RC, Barboza MJR, Daguano JKMF, Rogero SO, Santos C (2009) Effect of bioglass additions on the sintering of Y-TZP bioceramics. Mater Sci Eng C 29:1959–1964CrossRefGoogle Scholar
  28. 28.
    Peitl OF, Torre GL, Hench LL (1996) J Biomed Mater Res Part A 30:509–514CrossRefGoogle Scholar
  29. 29.
    Peitl OF, Zanotto ED, Hench LL (2001) J Non-Cryst Solids 292:115–126CrossRefGoogle Scholar
  30. 30.
    Lian J, Garay JE, Wang J (2007) Scripta Mater 56:1095–1098CrossRefGoogle Scholar
  31. 31.
    Rouxel T (2007) J Am Ceram Soc 90:3019–3039CrossRefGoogle Scholar
  32. 32.
    Korhonen AS, Jones PL, Cocks FH (1981) Mater Sci Eng 49:127–132CrossRefGoogle Scholar
  33. 33.
    Lu X, Leng Y (2005) Biomaterials 26:1097–1108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Biomedical Engineering and Materials, College of MedicineSoonChunHyang UniversityChungcheongnam-DoRepublic of Korea

Personalised recommendations