Skip to main content
Log in

Percolation effect and thermoplasticity of conducting [poly(acrylic acid)/C16TAB-modified graphene oxide]n multilayer films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The feasibility and effectiveness of the electrostatic self-assembly technique are demonstrated for the fabrication of thermoplastically conducting multilayer films. The layer-by-layer self-assembly process is based on the alternating adsorption of low molecular weight (M n) poly(acrylic acid) (PAA) and cetyltrimethyl-ammonium bromide-modified graphene oxide (GO) with three carbon layers. A unique conductivity percolation effect is observed at a percolation threshold (percolation bilayer number) because the carbon–carbon interlayer can be expanded by the diffusion of PAA molecular chains. The resultant multilayer films show typical positive/negative temperature coefficient effects because of the thermoplasticity of the PAA with low M n. After being reduced from GO to graphene (G), the electrical conductivity of the resulting (PAA/G)n multilayer film is dramatically enhanced, and the percolation threshold occurs at a high bilayer number. The reasonable conductivities and the percolation effect make these films inherently interesting and potentially useful as components of advanced electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iler RK (1966) J Colloid Interf Sci 21:569

    Article  CAS  Google Scholar 

  2. Decher G (1997) Science 277:1232

    Article  CAS  Google Scholar 

  3. Decher G, Hong JD (1991) Ber Bunsen-Ges Phys Chem 95:1430

    Article  CAS  Google Scholar 

  4. Decher G, Hong JD (1991) Makromol Chem Macromol Symp 46:321

    Article  CAS  Google Scholar 

  5. Cheung JH, Stockton WB, Rubner MF (1997) Macromolecules 30:2712

    Article  CAS  Google Scholar 

  6. Sukhorukov GB, Mohwald H, Decher G, Lvov YM (1996) Thin Solid Films 284–285:220

    Article  Google Scholar 

  7. Rusling JF (2000) In protein architecture: interfacing molecular assemblies and immobilization biotechnology. Marcel Dekker, New York

    Google Scholar 

  8. Orozco VH, Kozlovskaya V, Kharlampieva E, Lopez BL, Tsukruk VV (2010) Polymer 51:4127

    Article  CAS  Google Scholar 

  9. Decher G (2003) In: Decher G, Schlenoff JB (eds) Multilayer thin films: sequential assembly of nanocomposite materials. Wiley, New York, p 1

    Google Scholar 

  10. Farhat TP, Schlenoff JB (2002) Electrochem Solid State Lett 5:B13

    Article  CAS  Google Scholar 

  11. Hattori H (2001) Adv Mater 13:51

    Article  CAS  Google Scholar 

  12. Graul TW, Schlenoff JB (1999) Anal Chem 71:4007

    Article  CAS  Google Scholar 

  13. Ngankam PA, Lavalle P, Voege JC, Szyk L, Decher G, Schaaf P et al (2000) J Am Chem Soc 122:8998

    Article  CAS  Google Scholar 

  14. Rudra JS, Dave K, Haynie DT (2006) J Biomat Sci Polym Edn 17:1301

    Article  CAS  Google Scholar 

  15. Sun Y, Zhang X, Sun C, Wang B, Shen J (1996) Macromol Chem Phys 197:147

    Article  CAS  Google Scholar 

  16. Joly S, Kane R, Radzilowski L, Wang T, Wu A, Cohen RE et al (2000) Langmuir 16:1354

    Article  CAS  Google Scholar 

  17. Fou AC, Onitsuka O, Ferreira M, Rubner MF (1996) J Appl Phys 79:7501

    Article  CAS  Google Scholar 

  18. Dai J, Jensen AW, Mohanty DK, Erndt J, Bruening ML (2001) Langmuir 17:931

    Article  CAS  Google Scholar 

  19. Decher G, Lehr B, Lowack K, Lvov Y, Schmitt J (1994) Biosens Bioelectron 9:677

    Article  CAS  Google Scholar 

  20. Feldheim DL, Grabar KC, Natan MJ, Mallouk TE (1996) J Am Chem Soc 118:7640

    Article  CAS  Google Scholar 

  21. Cassagneau T, Guerin F, Fendler JH (2000) Langmuir 16:7318

    Article  CAS  Google Scholar 

  22. Wu JH, Tang QW, Sun H, Lin JM, Ao HY, Huang ML et al (2008) Langmuir 24:4800

    Article  CAS  Google Scholar 

  23. Tang QW, Wu JH, Li QH, Lin JM (2008) Polymer 49:5329

    Article  CAS  Google Scholar 

  24. Tang QW, Tang ZY, Wu JH, Lin JM, Oh I (2011) J Mater Chem 21:5378

    Article  CAS  Google Scholar 

  25. Fou AC, Rubner MF (1995) Macromolecules 28:7115

    Article  CAS  Google Scholar 

  26. Tang QW, Lin JM, Wu JH, Xu YW, Zhang CJ (2007) J Appl Polym Sci 104:735

    Article  CAS  Google Scholar 

  27. Tang QW, Lin JM, Wu ZB, Wu JH, Huang ML, Yang YY (2007) Eur Polym J 43:2214

    Article  CAS  Google Scholar 

  28. Tang QW, Wu JH, Sun H, Lin JM, Fan SJ, Hu D (2008) Carbohyd Polym 74:215

    Article  CAS  Google Scholar 

  29. Szabo T, Szeri A, Dekany I (2005) Carbon 43:87

    Article  CAS  Google Scholar 

  30. Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS et al (2009) Adv Funct Mater 19:1987

    Article  CAS  Google Scholar 

  31. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y et al (2007) Carbon 45:1558

    Article  CAS  Google Scholar 

  32. Pei SF, Zhao JP, Du JH, Ren WC, Cheng HM (2010) Carbon 48:4466

    Article  CAS  Google Scholar 

  33. Kawasaki H, Ban K, Maeda H (2004) J Phys Chem B 108:16746

    Article  CAS  Google Scholar 

  34. Xu SL, Wang C, Zeng QD, Wu P, Wang ZG, Yan HK et al (2002) Langmuir 18:657

    Article  CAS  Google Scholar 

  35. Szabo T, Tombacz E, Illes E, Dekany I (2006) Carbon 44:537

    Article  CAS  Google Scholar 

  36. Mermoux M, Chabre Y, Rousseau A (1991) Carbon 29:469

    Article  CAS  Google Scholar 

  37. Lerf A, He H, Riedl T, Forster M, Klinowsk I (1997) Solid State Ionics 101–103:857

    Article  Google Scholar 

  38. Bryce MR, Petty MC (1995) Nature 374:771

    Article  CAS  Google Scholar 

  39. Bjornholm T, Hassenkam T, Reitzel N (1999) J Mater Chem 9:1975

    Article  CAS  Google Scholar 

  40. Jeon K, Lumata L, Tokumoto T, Steven E, Brooks J, Alamo RG (2007) Polymer 48:4751

    Article  CAS  Google Scholar 

  41. Zhang J, Mine M, Zhu D, Matsuo M (2009) Carbon 47:1311

    Article  CAS  Google Scholar 

  42. Wan Y, Xiong CX, Yu JY, Wen DJ (2005) Compos Sci Technol 65:1769

    Article  CAS  Google Scholar 

  43. Xu HP, Dang ZM (2007) Chem Phys Lett 438:196

    Article  CAS  Google Scholar 

  44. Xiong C, Zhou Z, Xu W, Hu H, Zhang Y, Dong L (2005) Carbon 43:1788

    Article  CAS  Google Scholar 

  45. Fournier J, Boiteux G, Seytre G (1997) J Mater Sci Lett 16:1677

    Article  CAS  Google Scholar 

  46. Zheng Q, Song YH, Wu G, Song XB (2003) J Polym Sci Part B Polym Phys 41:983

    Article  CAS  Google Scholar 

  47. Kotov NA, Dekany I, Fendler JH (1996) Adv Mater 8:637

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Ocean University of China for providing Seed Fund to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunwei Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Q., Cai, H., Yuan, S. et al. Percolation effect and thermoplasticity of conducting [poly(acrylic acid)/C16TAB-modified graphene oxide]n multilayer films. J Mater Sci 48, 1843–1851 (2013). https://doi.org/10.1007/s10853-012-6950-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6950-9

Keywords

Navigation